(0,...30) | 0100000000000000000000000000000 |
Output sequence length | |
Output sequence c(n) | 10000010110011111000101111110011001011001001110100 |
Toolbox: Low-PAPR sequence generator
Sequence length MZC | |
Largest prime num NZC<MZC | 31 |
Group number u | |
Base sequence number v | 0 |
Cyclic shift | |
Display precision | |
Base sequence | 1, -0.44-0.90j, 0.98+0.20j, 0.92+0.39j, 0.15-0.99j, 0.53+0.85j 0.15+0.99j, 0.98-0.20j, -0.76+0.65j, -0.99+0.10j, -0.05+1.00j, -0.25-0.97j 0.53-0.85j, -0.61-0.79j, 0.69+0.72j, -0.25+0.97j, 0.69+0.72j, -0.61-0.79j 0.53-0.85j, -0.25-0.97j, -0.05+1.00j, -0.99+0.10j, -0.76+0.65j, 0.98-0.20j 0.15+0.99j, 0.53+0.85j, 0.15-0.99j, 0.92+0.39j, 0.98+0.20j, -0.44-0.90j 1+0.00j, 1, -0.44-0.90j, 0.98+0.20j, 0.92+0.39j, 0.15-0.99j |
Low-PAPR sequence | 1, 0.44+0.90j, 0.98+0.20j, -0.92-0.39j, 0.15-0.99j, -0.53-0.85j 0.15+0.99j, -0.98+0.20j, -0.76+0.65j, 0.99-0.10j, -0.05+1.00j, 0.25+0.97j 0.53-0.85j, 0.61+0.79j, 0.69+0.72j, 0.25-0.97j, 0.69+0.72j, 0.61+0.79j 0.53-0.85j, 0.25+0.97j, -0.05+1.00j, 0.99-0.10j, -0.76+0.65j, -0.98+0.20j 0.15+0.99j, -0.53-0.85j, 0.15-0.99j, -0.92-0.39j, 0.98+0.20j, 0.44+0.90j 1+0.00j, -1+0.00j, -0.44-0.90j, -0.98-0.20j, 0.92+0.39j, -0.15+0.99j |
Pseudo-random sequence generation
Generic pseudo-random sequences are defined by a length-31 Gold sequence. The output sequence c(n) of length , where is defined by:
where =1600 and the first m-sequence shall be initialized with . The initialization of the second m-sequence, , is denoted by with the value depending on the application of the sequence.
What it means: is the i-th bit of for i=0,...,30.
Low-PAPR sequence generation
The low-PAPR sequence is defined by a cyclic shift of a base sequence according to
where is the length of the sequence. Multiple sequences are defined from a single base sequence through different values of 𝛼 and 𝛿.
Base sequences are divided into groups, where is the group number and v is the base sequence number within the group, such that each group contains one base sequence (𝑣 = 0) of each length and two base sequences (𝑣 = 0,1) of each length . The definition of the base sequence depends on the sequence length .
What it means:
- Each base sequence length has 30 groups of sequences.
- For base sequence length ≤ 72, there is only one base sequence within each group, i.e., v=0.
- For base sequence length > 72, there are two sequences within each group, i.e., v = 0 or 1.
- Base sequence of length {6, 12, 18, 24} are generated from pre-defined tables of φ
- Low-PAPR sequence is generated by rotating the base sequence with phase α.
Base sequences of length 36 or larger
For , the base sequence is given by
where
The length is given by the largest prime number such that
Base sequences of length less than 36
For the base sequence is given by
where the value of is given by Tables 5.2.2.2-1 to 5.2.2.2-4.
For , the base sequence is given by
φ(n) for Mzc=6 | ||||||
u | ||||||
---|---|---|---|---|---|---|
0 | -3 | -1 | 3 | 3 | -1 | -3 |
1 | -3 | 3 | -1 | -1 | 3 | -3 |
2 | -3 | -3 | -3 | 3 | 1 | -3 |
3 | 1 | 1 | 1 | 3 | -1 | -3 |
4 | 1 | 1 | 1 | -3 | -1 | 3 |
5 | -3 | 1 | -1 | -3 | -3 | -3 |
6 | -3 | 1 | 3 | -3 | -3 | -3 |
7 | -3 | -1 | 1 | -3 | 1 | -1 |
8 | -3 | -1 | -3 | 1 | -3 | -3 |
9 | -3 | -3 | 1 | -3 | 3 | -3 |
10 | -3 | 1 | 3 | 1 | -3 | -3 |
11 | -3 | -1 | -3 | 1 | 1 | -3 |
12 | 1 | 1 | 3 | -1 | -3 | 3 |
13 | 1 | 1 | 3 | 3 | -1 | 3 |
14 | 1 | 1 | 1 | -3 | 3 | -1 |
15 | 1 | 1 | 1 | -1 | 3 | -3 |
16 | -3 | -1 | -1 | -1 | 3 | -1 |
17 | -3 | -3 | -1 | 1 | -1 | -3 |
18 | -3 | -3 | -3 | 1 | -3 | -1 |
19 | -3 | 1 | 1 | -3 | -1 | -3 |
20 | -3 | 3 | -3 | 1 | 1 | -3 |
21 | -3 | 1 | -3 | -3 | -3 | -1 |
22 | 1 | 1 | -3 | 3 | 1 | 3 |
23 | 1 | 1 | -3 | -3 | 1 | -3 |
24 | 1 | 1 | 3 | -1 | 3 | 3 |
25 | 1 | 1 | -3 | 1 | 3 | 3 |
26 | 1 | 1 | -1 | -1 | 3 | -1 |
27 | 1 | 1 | -1 | 3 | -1 | -1 |
28 | 1 | 1 | -1 | 3 | -3 | -1 |
29 | 1 | 1 | -3 | 1 | -1 | -1 |
φ(n) for Mzc=12 | ||||||||||||
u | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -3 | 1 | -3 | -3 | -3 | 3 | -3 | -1 | 1 | 1 | 1 | -3 |
1 | -3 | 3 | 1 | -3 | 1 | 3 | -1 | -1 | 1 | 3 | 3 | 3 |
2 | -3 | 3 | 3 | 1 | -3 | 3 | -1 | 1 | 3 | -3 | 3 | -3 |
3 | -3 | -3 | -1 | 3 | 3 | 3 | -3 | 3 | -3 | 1 | -1 | -3 |
4 | -3 | -1 | -1 | 1 | 3 | 1 | 1 | -1 | 1 | -1 | -3 | 1 |
5 | -3 | -3 | 3 | 1 | -3 | -3 | -3 | -1 | 3 | -1 | 1 | 3 |
6 | 1 | -1 | 3 | -1 | -1 | -1 | -3 | -1 | 1 | 1 | 1 | -3 |
7 | -1 | -3 | 3 | -1 | -3 | -3 | -3 | -1 | 1 | -1 | 1 | -3 |
8 | -3 | -1 | 3 | 1 | -3 | -1 | -3 | 3 | 1 | 3 | 3 | 1 |
9 | -3 | -1 | -1 | -3 | -3 | -1 | -3 | 3 | 1 | 3 | -1 | -3 |
10 | -3 | 3 | -3 | 3 | 3 | -3 | -1 | -1 | 3 | 3 | 1 | -3 |
11 | -3 | -1 | -3 | -1 | -1 | -3 | 3 | 3 | -1 | -1 | 1 | -3 |
12 | -3 | -1 | 3 | -3 | -3 | -1 | -3 | 1 | -1 | -3 | 3 | 3 |
13 | -3 | 1 | -1 | -1 | 3 | 3 | -3 | -1 | -1 | -3 | -1 | -3 |
14 | 1 | 3 | -3 | 1 | 3 | 3 | 3 | 1 | -1 | 1 | -1 | 3 |
15 | -3 | 1 | 3 | -1 | -1 | -3 | -3 | -1 | -1 | 3 | 1 | -3 |
16 | -1 | -1 | -1 | -1 | 1 | -3 | -1 | 3 | 3 | -1 | -3 | 1 |
17 | -1 | 1 | 1 | -1 | 1 | 3 | 3 | -1 | -1 | -3 | 1 | -3 |
18 | -3 | 1 | 3 | 3 | -1 | -1 | -3 | 3 | 3 | -3 | 3 | -3 |
19 | -3 | -3 | 3 | -3 | -1 | 3 | 3 | 3 | -1 | -3 | 1 | -3 |
20 | 3 | 1 | 3 | 1 | 3 | -3 | -1 | 1 | 3 | 1 | -1 | -3 |
21 | -3 | 3 | 1 | 3 | -3 | 1 | 1 | 1 | 1 | 3 | -3 | 3 |
22 | -3 | 3 | 3 | 3 | -1 | -3 | -3 | -1 | -3 | 1 | 3 | -3 |
23 | 3 | -1 | -3 | 3 | -3 | -1 | 3 | 3 | 3 | -3 | -1 | -3 |
24 | -3 | -1 | 1 | -3 | 1 | 3 | 3 | 3 | -1 | -3 | 3 | 3 |
25 | -3 | 3 | 1 | -1 | 3 | 3 | -3 | 1 | -1 | 1 | -1 | 1 |
26 | -1 | 1 | 3 | -3 | 1 | -1 | 1 | -1 | -1 | -3 | 1 | -1 |
27 | -3 | -3 | 3 | 3 | 3 | -3 | -1 | 1 | -3 | 3 | 1 | -3 |
28 | 1 | -1 | 3 | 1 | 1 | -1 | -1 | -1 | 1 | 3 | -3 | 1 |
29 | -3 | 3 | -3 | 3 | -3 | -3 | 3 | -1 | -1 | 1 | 3 | -3 |
φ(n) for Mzc=18 | ||||||||||||||||||
u | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -1 | 3 | -1 | -3 | 3 | 1 | -3 | -1 | 3 | -3 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 |
1 | 3 | -3 | 3 | -1 | 1 | 3 | -3 | -1 | -3 | -3 | -1 | -3 | 3 | 1 | -1 | 3 | -3 | 3 |
2 | -3 | 3 | 1 | -1 | -1 | 3 | -3 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 3 | -1 | -3 | -1 |
3 | -3 | -3 | 3 | 3 | 3 | 1 | -3 | 1 | 3 | 3 | 1 | -3 | -3 | 3 | -1 | -3 | -1 | 1 |
4 | 1 | 1 | -1 | -1 | -3 | -1 | 1 | -3 | -3 | -3 | 1 | -3 | -1 | -1 | 1 | -1 | 3 | 1 |
5 | 3 | -3 | 1 | 1 | 3 | -1 | 1 | -1 | -1 | -3 | 1 | 1 | -1 | 3 | 3 | -3 | 3 | -1 |
6 | -3 | 3 | -1 | 1 | 3 | 1 | -3 | -1 | 1 | 1 | -3 | 1 | 3 | 3 | -1 | -3 | -3 | -3 |
7 | 1 | 1 | -3 | 3 | 3 | 1 | 3 | -3 | 3 | -1 | 1 | 1 | -1 | 1 | -3 | -3 | -1 | 3 |
8 | -3 | 1 | -3 | -3 | 1 | -3 | -3 | 3 | 1 | -3 | -1 | -3 | -3 | -3 | -1 | 1 | 1 | 3 |
9 | 3 | -1 | 3 | 1 | -3 | -3 | -1 | 1 | -3 | -3 | 3 | 3 | 3 | 1 | 3 | -3 | 3 | -3 |
10 | -3 | -3 | -3 | 1 | -3 | 3 | 1 | 1 | 3 | -3 | -3 | 1 | 3 | -1 | 3 | -3 | -3 | 3 |
11 | -3 | -3 | 3 | 3 | 3 | -1 | -1 | -3 | -1 | -1 | -1 | 3 | 1 | -3 | -3 | -1 | 3 | -1 |
12 | -3 | -1 | -3 | -3 | 1 | 1 | -1 | -3 | -1 | -3 | -1 | -1 | 3 | 3 | -1 | 3 | 1 | 3 |
13 | 1 | 1 | -3 | -3 | -3 | -3 | 1 | 3 | -3 | 3 | 3 | 1 | -3 | -1 | 3 | -1 | -3 | 1 |
14 | -3 | 3 | -1 | -3 | -1 | -3 | 1 | 1 | -3 | -3 | -1 | -1 | 3 | -3 | 1 | 3 | 1 | 1 |
15 | 3 | 1 | -3 | 1 | -3 | 3 | 3 | -1 | -3 | -3 | -1 | -3 | -3 | 3 | -3 | -1 | 1 | 3 |
16 | -3 | -1 | -3 | -1 | -3 | 1 | 3 | -3 | -1 | 3 | 3 | 3 | 1 | -1 | -3 | 3 | -1 | -3 |
17 | -3 | -1 | 3 | 3 | -1 | 3 | -1 | -3 | -1 | 1 | -1 | -3 | -1 | -1 | -1 | 3 | 3 | 1 |
18 | -3 | 1 | -3 | -1 | -1 | 3 | 1 | -3 | -3 | -3 | -1 | -3 | -3 | 1 | 1 | 1 | -1 | -1 |
19 | 3 | 3 | 3 | -3 | -1 | -3 | -1 | 3 | -1 | 1 | -1 | -3 | 1 | -3 | -3 | -1 | 3 | 3 |
20 | -3 | 1 | 1 | -3 | 1 | 1 | 3 | -3 | -1 | -3 | -1 | 3 | -3 | 3 | -1 | -1 | -1 | -3 |
21 | 1 | -3 | -1 | -3 | 3 | 3 | -1 | -3 | 1 | -3 | -3 | -1 | -3 | -1 | 1 | 3 | 3 | 3 |
22 | -3 | -3 | 1 | -1 | -1 | 1 | 1 | -3 | -1 | 3 | 3 | 3 | 3 | -1 | 3 | 1 | 3 | 1 |
23 | 3 | -1 | -3 | 1 | -3 | -3 | -3 | 3 | 3 | -1 | 1 | -3 | -1 | 3 | 1 | 1 | 3 | 3 |
24 | 3 | -1 | -1 | 1 | -3 | -1 | -3 | -1 | -3 | -3 | -1 | -3 | 1 | 1 | 1 | -3 | -3 | 3 |
25 | -3 | -3 | 1 | -3 | 3 | 3 | 3 | -1 | 3 | 1 | 1 | -3 | -3 | -3 | 3 | -3 | -1 | -1 |
26 | -3 | -1 | -1 | -3 | 1 | -3 | 3 | -1 | -1 | -3 | 3 | 3 | -3 | -1 | 3 | -1 | -1 | -1 |
27 | -3 | -3 | 3 | 3 | -3 | 1 | 3 | -1 | -3 | 1 | -1 | -3 | 3 | -3 | -1 | -1 | -1 | 3 |
28 | -1 | -3 | 1 | -3 | -3 | -3 | 1 | 1 | 3 | 3 | -3 | 3 | 3 | -3 | -1 | 3 | -3 | 1 |
29 | -3 | 3 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 3 | 3 | -3 | -1 | 1 | 3 | -1 | 3 | -1 |
φ(n) for Mzc=24 | ||||||||||||||||||||||||
u | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | -1 | -3 | 3 | -1 | 3 | 1 | 3 | -1 | 1 | -3 | -1 | -3 | -1 | 1 | 3 | -3 | -1 | -3 | 3 | 3 | 3 | -3 | -3 | -3 |
1 | -1 | -3 | 3 | 1 | 1 | -3 | 1 | -3 | -3 | 1 | -3 | -1 | -1 | 3 | -3 | 3 | 3 | 3 | -3 | 1 | 3 | 3 | -3 | -3 |
2 | -1 | -3 | -3 | 1 | -1 | -1 | -3 | 1 | 3 | -1 | -3 | -1 | -1 | -3 | 1 | 1 | 3 | 1 | -3 | -1 | -1 | 3 | -3 | -3 |
3 | 1 | -3 | 3 | -1 | -3 | -1 | 3 | 3 | 1 | -1 | 1 | 1 | 3 | -3 | -1 | -3 | -3 | -3 | -1 | 3 | -3 | -1 | -3 | -3 |
4 | -1 | 3 | -3 | -3 | -1 | 3 | -1 | -1 | 1 | 3 | 1 | 3 | -1 | -1 | -3 | 1 | 3 | 1 | -1 | -3 | 1 | -1 | -3 | -3 |
5 | -3 | -1 | 1 | -3 | -3 | 1 | 1 | -3 | 3 | -1 | -1 | -3 | 1 | 3 | 1 | -1 | -3 | -1 | -3 | 1 | -3 | -3 | -3 | -3 |
6 | -3 | 3 | 1 | 3 | -1 | 1 | -3 | 1 | -3 | 1 | -1 | -3 | -1 | -3 | -3 | -3 | -3 | -1 | -1 | -1 | 1 | 1 | -3 | -3 |
7 | -3 | 1 | 3 | -1 | 1 | -1 | 3 | -3 | 3 | -1 | -3 | -1 | -3 | 3 | -1 | -1 | -1 | -3 | -1 | -1 | -3 | 3 | 3 | -3 |
8 | -3 | 1 | -3 | 3 | -1 | -1 | -1 | -3 | 3 | 1 | -1 | -3 | -1 | 1 | 3 | -1 | 1 | -1 | 1 | -3 | -3 | -3 | -3 | -3 |
9 | 1 | 1 | -1 | -3 | -1 | 1 | 1 | -3 | 1 | -1 | 1 | -3 | 3 | -3 | -3 | 3 | -1 | -3 | 1 | 3 | -3 | 1 | -3 | -3 |
10 | -3 | -3 | -3 | -1 | 3 | -3 | 3 | 1 | 3 | 1 | -3 | -1 | -1 | -3 | 1 | 1 | 3 | 1 | -1 | -3 | 3 | 1 | 3 | -3 |
11 | -3 | 3 | -1 | 3 | 1 | -1 | -1 | -1 | 3 | 3 | 1 | 1 | 1 | 3 | 3 | 1 | -3 | -3 | -1 | 1 | -3 | 1 | 3 | -3 |
12 | 3 | -3 | 3 | -1 | -3 | 1 | 3 | 1 | -1 | -1 | -3 | -1 | 3 | -3 | 3 | -1 | -1 | 3 | 3 | -3 | -3 | 3 | -3 | -3 |
13 | -3 | 3 | -1 | 3 | -1 | 3 | 3 | 1 | 1 | -3 | 1 | 3 | -3 | 3 | -3 | -3 | -1 | 1 | 3 | -3 | -1 | -1 | -3 | -3 |
14 | -3 | 1 | -3 | -1 | -1 | 3 | 1 | 3 | -3 | 1 | -1 | 3 | 3 | -1 | -3 | 3 | -3 | -1 | -1 | -3 | -3 | -3 | 3 | -3 |
15 | -3 | -1 | -1 | -3 | 1 | -3 | -3 | -1 | -1 | 3 | -1 | 1 | -1 | 3 | 1 | -3 | -1 | 3 | 1 | 1 | -1 | -1 | -3 | -3 |
16 | -3 | -3 | 1 | -1 | 3 | 3 | -3 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 3 | -3 | 1 | -3 | 1 | -1 | -1 | -1 | -3 |
17 | 3 | -1 | 3 | -1 | 1 | -3 | 1 | 1 | -3 | -3 | 3 | -3 | -1 | -1 | -1 | -1 | -1 | -3 | -3 | -1 | 1 | 1 | -3 | -3 |
18 | -3 | 1 | -3 | 1 | -3 | -3 | 1 | -3 | 1 | -3 | -3 | -3 | -3 | -3 | 1 | -3 | -3 | 1 | 1 | -3 | 1 | 1 | -3 | -3 |
19 | -3 | -3 | 3 | 3 | 1 | -1 | -1 | -1 | 1 | -3 | -1 | 1 | -1 | 3 | -3 | -1 | -3 | -1 | -1 | 1 | -3 | 3 | -1 | -3 |
20 | -3 | -3 | -1 | -1 | -1 | -3 | 1 | -1 | -3 | -1 | 3 | -3 | 1 | -3 | 3 | -3 | 3 | 3 | 1 | -1 | -1 | 1 | -3 | -3 |
21 | 3 | -1 | 1 | -1 | 3 | -3 | 1 | 1 | 3 | -1 | -3 | 3 | 1 | -3 | 3 | -1 | -1 | -1 | -1 | 1 | -3 | -3 | -3 | -3 |
22 | -3 | 1 | -3 | 3 | -3 | 1 | -3 | 3 | 1 | -1 | -3 | -1 | -3 | -3 | -3 | -3 | 1 | 3 | -1 | 1 | 3 | 3 | 3 | -3 |
23 | -3 | -1 | 1 | -3 | -1 | -1 | 1 | 1 | 1 | 3 | 3 | -1 | 1 | -1 | 1 | -1 | -1 | -3 | -3 | -3 | 3 | 1 | -1 | -3 |
24 | -3 | 3 | -1 | -3 | -1 | -1 | -1 | 3 | -1 | -1 | 3 | -3 | -1 | 3 | -3 | 3 | -3 | -1 | 3 | 1 | 1 | -1 | -3 | -3 |
25 | -3 | 1 | -1 | -3 | -3 | -1 | 1 | -3 | -1 | -3 | 1 | 1 | -1 | 1 | 1 | 3 | 3 | 3 | -1 | 1 | -1 | 1 | -1 | -3 |
26 | -1 | 3 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -3 | 1 | 3 | 1 | 1 | -3 | -3 | -3 | -1 | -3 | -1 | -3 | -3 |
27 | 3 | -3 | -3 | -1 | 3 | 3 | -3 | -1 | 3 | 1 | 1 | 1 | 3 | -1 | 3 | -3 | -1 | 3 | -1 | 3 | 1 | -1 | -3 | -3 |
28 | -3 | 1 | -3 | 1 | -3 | 1 | 1 | 3 | 1 | -3 | -3 | -1 | 1 | 3 | -1 | -3 | 3 | 1 | -1 | -3 | -3 | -3 | -3 | -3 |
29 | 3 | -3 | -1 | 1 | 3 | -1 | -1 | -3 | -1 | 3 | -1 | -3 | -1 | -3 | 3 | -1 | 3 | 1 | 1 | -3 | 3 | -3 | -3 | -3 |