×
Jan-03-2024
Apple Inc is looking for a 4G/5G system engineer on mobility control. Based in California, USA (Bay Area or San Diego). Details Here.
This ASN.1 segment is the start of the NR RRC PDU definitions.
The BCCH-BCH-Message class is the set of RRC messages that may be sent from the network to the UE via BCH on the BCCH logical channel.
-- ASN1START -- TAG-BCCH-BCH-MESSAGE-START BCCH-BCH-Message ::= SEQUENCE { message BCCH-BCH-MessageType } BCCH-BCH-MessageType ::= CHOICE { mib MIB, messageClassExtension SEQUENCE {} } -- TAG-BCCH-BCH-MESSAGE-STOP -- ASN1STOP
The BCCH-DL-SCH-Message class is the set of RRC messages that may be sent from the network to the UE via DL-SCH on the BCCH logical channel.
-- ASN1START -- TAG-BCCH-DL-SCH-MESSAGE-START BCCH-DL-SCH-Message ::= SEQUENCE { message BCCH-DL-SCH-MessageType } BCCH-DL-SCH-MessageType ::= CHOICE { c1 CHOICE { systemInformation SystemInformation, systemInformationBlockType1 SIB1 }, messageClassExtension SEQUENCE {} } -- TAG-BCCH-DL-SCH-MESSAGE-STOP -- ASN1STOP
The DL-CCCH-Message class is the set of RRC messages that may be sent from the Network to the UE on the downlink CCCH logical channel.
-- ASN1START -- TAG-DL-CCCH-MESSAGE-START DL-CCCH-Message ::= SEQUENCE { message DL-CCCH-MessageType } DL-CCCH-MessageType ::= CHOICE { c1 CHOICE { rrcReject RRCReject, rrcSetup RRCSetup, spare2 NULL, spare1 NULL }, messageClassExtension SEQUENCE {} } -- TAG-DL-CCCH-MESSAGE-STOP -- ASN1STOP
The DL-DCCH-Message class is the set of RRC messages that may be sent from the network to the UE on the downlink DCCH logical channel.
-- ASN1START -- TAG-DL-DCCH-MESSAGE-START DL-DCCH-Message ::= SEQUENCE { message DL-DCCH-MessageType } DL-DCCH-MessageType ::= CHOICE { c1 CHOICE { rrcReconfiguration RRCReconfiguration, rrcResume RRCResume, rrcRelease RRCRelease, rrcReestablishment RRCReestablishment, securityModeCommand SecurityModeCommand, dlInformationTransfer DLInformationTransfer, ueCapabilityEnquiry UECapabilityEnquiry, counterCheck CounterCheck, mobilityFromNRCommand MobilityFromNRCommand, spare7 NULL, spare6 NULL,spare5 NULL,spare4 NULL, spare3 NULL,spare2 NULL,spare1 NULL }, messageClassExtension SEQUENCE {} } -- TAG-DL-DCCH-MESSAGE-STOP -- ASN1STOP
The PCCH-Message class is the set of RRC messages that may be sent from the Network to the UE on the PCCH logical channel.
-- ASN1START -- TAG-PCCH-PCH-MESSAGE-START PCCH-Message ::= SEQUENCE { message PCCH-MessageType } PCCH-MessageType ::= CHOICE { c1 CHOICE { paging Paging, spare1 NULL }, messageClassExtension SEQUENCE {} } -- TAG-PCCH-PCH-MESSAGE-STOP -- ASN1STOP
The UL-CCCH-Message class is the set of 48-bits RRC messages that may be sent from the UE to the Network on the uplink CCCH logical channel.
-- ASN1START -- TAG-UL-CCCH-MESSAGE-START UL-CCCH-Message ::= SEQUENCE { message UL-CCCH-MessageType } UL-CCCH-MessageType ::= CHOICE { c1 CHOICE { rrcSetupRequest RRCSetupRequest, rrcResumeRequest RRCResumeRequest, rrcReestablishmentRequest RRCReestablishmentRequest, rrcSystemInfoRequest RRCSystemInfoRequest }, messageClassExtension SEQUENCE {} } -- TAG-UL-CCCH-MESSAGE-STOP -- ASN1STOP
The UL-CCCH1-Message class is the set of 64-bits RRC messages that may be sent from the UE to the Network on the uplink CCCH1 logical channel.
-- ASN1START -- TAG-UL-CCCH1-MESSAGE-START UL-CCCH1-Message ::= SEQUENCE { message UL-CCCH1-MessageType } UL-CCCH1-MessageType ::= CHOICE { c1 CHOICE { rrcResumeRequest1 RRCResumeRequest1, spare3 NULL, spare2 NULL, spare1 NULL }, messageClassExtension SEQUENCE {} } -- TAG-UL-CCCH1-MESSAGE-STOP -- ASN1STOP
The UL-DCCH-Message class is the set of RRC messages that may be sent from the UE to the network on the uplink DCCH logical channel.
-- ASN1START -- TAG-UL-DCCH-MESSAGE-START UL-DCCH-Message ::= SEQUENCE { message UL-DCCH-MessageType } UL-DCCH-MessageType ::= CHOICE { c1 CHOICE { measurementReport MeasurementReport, rrcReconfigurationComplete RRCReconfigurationComplete, rrcSetupComplete RRCSetupComplete, rrcReestablishmentComplete RRCReestablishmentComplete, rrcResumeComplete RRCResumeComplete, securityModeComplete SecurityModeComplete, securityModeFailure SecurityModeFailure, ulInformationTransfer ULInformationTransfer, locationMeasurementIndication LocationMeasurementIndication, ueCapabilityInformation UECapabilityInformation, counterCheckResponse CounterCheckResponse, ueAssistanceInformation UEAssistanceInformation, failureInformation FailureInformation, ulInformationTransferMRDC ULInformationTransferMRDC, scgFailureInformation SCGFailureInformation, scgFailureInformationEUTRA SCGFailureInformationEUTRA }, messageClassExtension SEQUENCE {} } -- TAG-UL-DCCH-MESSAGE-STOP -- ASN1STOP
The CounterCheck message is used by the network to indicate the current COUNT MSB values associated to each DRB and to request the UE to compare these to its COUNT MSB values and to report the comparison results to the network.
-- ASN1START -- TAG-COUNTERCHECK-START CounterCheck ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { counterCheck CounterCheck-IEs, criticalExtensionsFuture SEQUENCE {} } } CounterCheck-IEs ::= SEQUENCE {drb-CountMSB-InfoListIndicates the MSBs of the COUNT values of the DRBs.DRB-CountMSB-InfoList, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } DRB-CountMSB-InfoList ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-CountMSB-Info DRB-CountMSB-Info ::= SEQUENCE { drb-Identity DRB-Identity,countMSB-UplinkIndicates the value of 25 MSBs from TX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB.INTEGER(0..33554431),countMSB-DownlinkIndicates the value of 25 MSBs from RX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB.INTEGER(0..33554431) } -- TAG-COUNTERCHECK-STOP -- ASN1STOP
CounterCheck-IEs field descriptions |
---|
drb-CountMSB-InfoList Indicates the MSBs of the COUNT values of the DRBs. |
DRB-CountMSB-Info field descriptions |
---|
countMSB-Downlink Indicates the value of 25 MSBs from RX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB. |
countMSB-Uplink Indicates the value of 25 MSBs from TX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB. |
The CounterCheckResponse message is used by the UE to respond to a CounterCheck message.
-- ASN1START -- TAG-COUNTERCHECKRESPONSE-START CounterCheckResponse ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { counterCheckResponse CounterCheckResponse-IEs, criticalExtensionsFuture SEQUENCE {} } } CounterCheckResponse-IEs ::= SEQUENCE {drb-CountInfoListIndicates the COUNT values of the DRBs.DRB-CountInfoList, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } DRB-CountInfoList ::= SEQUENCE (SIZE (0..maxDRB)) OF DRB-CountInfo DRB-CountInfo ::= SEQUENCE { drb-Identity DRB-Identity,count-UplinkIndicates the value of TX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB.INTEGER(0..4294967295),count-DownlinkIndicates the value of RX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB.INTEGER(0..4294967295) } -- TAG-COUNTERCHECKRESPONSE-STOP -- ASN1STOP
CounterCheckResponse-IEs field descriptions |
---|
drb-CountInfoList Indicates the COUNT values of the DRBs. |
DRB-CountInfo field descriptions |
---|
count-Downlink Indicates the value of RX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB. |
count-Uplink Indicates the value of TX_NEXT – 1 (specified in TS 38.323 [5]) associated to this DRB. |
The DLInformationTransfer message is used for the downlink transfer of NAS dedicated information.
-- ASN1START -- TAG-DLINFORMATIONTRANSFER-START DLInformationTransfer ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { dlInformationTransfer DLInformationTransfer-IEs, criticalExtensionsFuture SEQUENCE {} } } DLInformationTransfer-IEs ::= SEQUENCE { dedicatedNAS-Message DedicatedNAS-Message OPTIONAL, -- Need N lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-DLINFORMATIONTRANSFER-STOP -- ASN1STOP
The FailureInformation message is used to inform the network about a failure detected by the UE.
-- ASN1START -- TAG-FAILUREINFORMATION-START FailureInformation ::= SEQUENCE { criticalExtensions CHOICE { failureInformation FailureInformation-IEs, criticalExtensionsFuture SEQUENCE {} } } FailureInformation-IEs ::= SEQUENCE { failureInfoRLC-Bearer FailureInfoRLC-Bearer OPTIONAL, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } FailureInfoRLC-Bearer ::= SEQUENCE { cellGroupId CellGroupId, logicalChannelIdentity LogicalChannelIdentity, failureType ENUMERATED {rlc-failure, spare3, spare2, spare1} } -- TAG-FAILUREINFORMATION-STOP -- ASN1STOP
The LocationMeasurementIndication message is used to indicate that the UE is going to either start or stop location related measurement which requires measurement gaps.
-- ASN1START -- TAG-LOCATIONMEASUREMENTINDICATION-START LocationMeasurementIndication ::= SEQUENCE { criticalExtensions CHOICE { locationMeasurementIndication LocationMeasurementIndication-IEs, criticalExtensionsFuture SEQUENCE {} } } LocationMeasurementIndication-IEs ::= SEQUENCE { measurementIndication SetupRelease {LocationMeasurementInfo}, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-LOCATIONMEASUREMENTINDICATION-STOP -- ASN1STOP
The MeasurementReport message is used for the indication of measurement results.
-- ASN1START -- TAG-MEASUREMENTREPORT-START MeasurementReport ::= SEQUENCE { criticalExtensions CHOICE { measurementReport MeasurementReport-IEs, criticalExtensionsFuture SEQUENCE {} } } MeasurementReport-IEs ::= SEQUENCE { measResults MeasResults, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-MEASUREMENTREPORT-STOP -- ASN1STOP
The MIB includes the system information transmitted on BCH.
-- ASN1START -- TAG-MIB-START MIB ::= SEQUENCE {systemFrameNumberThe 6 most significant bits (MSB) of the 10-bit System Frame Number (SFN). The 4 LSB of the SFN are conveyed in the PBCH transport block as part of channel coding (i.e. outside the MIBencoding), as defined in clause 7.1 in TS 38.212 [17].BIT STRING (SIZE (6)),subCarrierSpacingCommonSubcarrier spacing for SIB1, Msg.2/4 for initial access, paging and broadcast SI-messages. If the UE acquires this MIB on an FR1 carrier frequency, the value scs15or60 corresponds to 15 kHz and the value scs30or120 corresponds to 30 kHz. If the UE acquires this MIB on an FR2 carrier frequency, the value scs15or60 corresponds to 60 kHz and the value scs30or120 corresponds to 120 kHz.ENUMERATED {scs15or60, scs30or120},ssb-SubcarrierOffsetCorresponds to kSSB (see TS 38.213 [13]), which is the frequency domain offset between SSB and the overall resource block grid in number of subcarriers. (See TS 38.211 [16], clause 7.4.3.1). The value range of this field may be extended by an additional most significant bit encoded within PBCH as specified in TS 38.213 [13]. This field may indicate that this celldoes not provide SIB1 and that there is hence no CORESET#0 configured in MIB (see TS 38.213 [13], clause 13). In this case, the field pdcch-ConfigSIB1 may indicate the frequency positions where the UE may (not) find a SS/PBCH with a control resource set and search space for SIB1 (see TS 38.213 [13], clause 13).INTEGER (0..15),dmrs-TypeA-PositionPosition of (first) DM-RS for downlink (see TS 38.211 [16], clause 7.4.1.1.2) and uplink (see TS 38.211 [16], clause 6.4.1.1.3).ENUMERATED {pos2, pos3},pdcch-ConfigSIB1Determines a common ControlResourceSet (CORESET), a common search space and necessary PDCCH parameters. If the field ssb-SubcarrierOffset indicates that SIB1 is absent, the field pdcch-ConfigSIB1 indicates the frequency positions where the UE may find SS/PBCH block with SIB1 or the frequency range where the network does not provide SS/PBCH block with SIB1 (see TS 38.213 [13], clause 13).PDCCH-ConfigSIB1,cellBarredValue barred means that the cell is barred, as defined in TS 38.304 [20].ENUMERATED {barred, notBarred},intraFreqReselectionControls cell selection/reselection to intra-frequency cells when the highest ranked cell is barred, or treated as barred by the UE, as specified in TS 38.304 [20].ENUMERATED {allowed, notAllowed}, spare BIT STRING (SIZE (1)) } -- TAG-MIB-STOP -- ASN1STOP
MIB field descriptions |
---|
cellBarred Value barred means that the cell is barred, as defined in TS 38.304 [20]. |
dmrs-TypeA-Position Position of (first) DM-RS for downlink (see TS 38.211 [16], clause 7.4.1.1.2) and uplink (see TS 38.211 [16], clause 6.4.1.1.3). |
intraFreqReselection Controls cell selection/reselection to intra-frequency cells when the highest ranked cell is barred, or treated as barred by the UE, as specified in TS 38.304 [20]. |
pdcch-ConfigSIB1 Determines a common ControlResourceSet (CORESET), a common search space and necessary PDCCH parameters. If the field ssb-SubcarrierOffset indicates that SIB1 is absent, the field pdcch-ConfigSIB1 indicates the frequency positions where the UE may find SS/PBCH block with SIB1 or the frequency range where the network does not provide SS/PBCH block with SIB1 (see TS 38.213 [13], clause 13). |
ssb-SubcarrierOffset Corresponds to kSSB (see TS 38.213 [13]), which is the frequency domain offset between SSB and the overall resource block grid in number of subcarriers. (See TS 38.211 [16], clause 7.4.3.1). The value range of this field may be extended by an additional most significant bit encoded within PBCH as specified in TS 38.213 [13]. This field may indicate that this celldoes not provide SIB1 and that there is hence no CORESET#0 configured in MIB (see TS 38.213 [13], clause 13). In this case, the field pdcch-ConfigSIB1 may indicate the frequency positions where the UE may (not) find a SS/PBCH with a control resource set and search space for SIB1 (see TS 38.213 [13], clause 13). |
subCarrierSpacingCommon Subcarrier spacing for SIB1, Msg.2/4 for initial access, paging and broadcast SI-messages. If the UE acquires this MIB on an FR1 carrier frequency, the value scs15or60 corresponds to 15 kHz and the value scs30or120 corresponds to 30 kHz. If the UE acquires this MIB on an FR2 carrier frequency, the value scs15or60 corresponds to 60 kHz and the value scs30or120 corresponds to 120 kHz. |
systemFrameNumber The 6 most significant bits (MSB) of the 10-bit System Frame Number (SFN). The 4 LSB of the SFN are conveyed in the PBCH transport block as part of channel coding (i.e. outside the MIBencoding), as defined in clause 7.1 in TS 38.212 [17]. |
The MobilityFromNRCommand message is used to command handover from NR to E-UTRA/EPC or E-UTRA/5GC.
-- ASN1START -- TAG-MOBILITYFROMNRCOMMAND-START MobilityFromNRCommand ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { mobilityFromNRCommand MobilityFromNRCommand-IEs, criticalExtensionsFuture SEQUENCE {} } } MobilityFromNRCommand-IEs ::= SEQUENCE {targetRAT-TypeIndicates the target RAT type.ENUMERATED { eutra, spare3, spare2, spare1, ...},targetRAT-MessageContainerThe field contains a message specified in another standard, as indicated by the targetRAT-Type, and carries information about the target cell identifier(s) and radio parameters relevant for the target radio access technology. A complete message is included, as specified in the other standard. See NOTE 1OCTET STRING,nas-SecurityParamFromNRThis field is used to deliver the key synchronisation and Key freshness for the NR to LTE/EPC handovers and a part of the downlink NAS COUNT as specified in TS 33.501 [11] and the content of the parameter is defined in TS 24.501 [23].OCTET STRING OPTIONAL, -- Cond HO-ToEPC lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-MOBILITYFROMNRCOMMAND-STOP -- ASN1STOP
MobilityFromNRCommand-IEs field descriptions |
---|
nas-SecurityParamFromNR This field is used to deliver the key synchronisation and Key freshness for the NR to LTE/EPC handovers and a part of the downlink NAS COUNT as specified in TS 33.501 [11] and the content of the parameter is defined in TS 24.501 [23]. |
targetRAT-MessageContainer The field contains a message specified in another standard, as indicated by the targetRAT-Type, and carries information about the target cell identifier(s) and radio parameters relevant for the target radio access technology. A complete message is included, as specified in the other standard. See NOTE 1 |
targetRAT-Type Indicates the target RAT type. |
targetRAT-Type | Standard to apply | targetRAT-MessageContainer |
---|---|---|
eutra | TS 36.331 [10] (clause 5.4.2) | DL-DCCH-Message including theRRCConnectionReconfiguration |
Conditional Presence | Explanation |
---|---|
HO-ToEPC | This field is mandatory present in case of inter system handover. Otherwise it is absent. |
The Paging message is used for the notification of one or more UEs.
-- ASN1START -- TAG-PAGING-START Paging ::= SEQUENCE { pagingRecordList PagingRecordList OPTIONAL, -- Need N lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } PagingRecordList ::= SEQUENCE (SIZE(1..maxNrofPageRec)) OF PagingRecord PagingRecord ::= SEQUENCE { ue-Identity PagingUE-Identity,accessTypeIndicates whether thePagingmessage is originated due to the PDU sessions from the non-3GPP access.ENUMERATED {non3GPP} OPTIONAL, -- Need N ... } PagingUE-Identity ::= CHOICE { ng-5G-S-TMSI NG-5G-S-TMSI, fullI-RNTI I-RNTI-Value, ... } -- TAG-PAGING-STOP -- ASN1STOP
PagingRecord field descriptions |
---|
accessType Indicates whether thePagingmessage is originated due to the PDU sessions from the non-3GPP access. |
The RRCReestablishment message is used to re-establish SRB1.
-- ASN1START -- TAG-RRCREESTABLISHMENT-START RRCReestablishment ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcReestablishment RRCReestablishment-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCReestablishment-IEs ::= SEQUENCE { nextHopChainingCount NextHopChainingCount, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-RRCREESTABLISHMENT-STOP -- ASN1STOP
The RRCReestablishmentComplete message is used to confirm the successful completion of an RRC connection re-establishment.
-- ASN1START -- TAG-RRCREESTABLISHMENTCOMPLETE-START RRCReestablishmentComplete ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcReestablishmentComplete RRCReestablishmentComplete-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCReestablishmentComplete-IEs ::= SEQUENCE { lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-RRCREESTABLISHMENTCOMPLETE-STOP -- ASN1STOP
The RRCReestablishmentRequest message is used to request the reestablishment of an RRC connection.
-- ASN1START -- TAG-RRCREESTABLISHMENTREQUEST-START RRCReestablishmentRequest ::= SEQUENCE { rrcReestablishmentRequest RRCReestablishmentRequest-IEs } RRCReestablishmentRequest-IEs ::= SEQUENCE {ue-IdentityUE identity included to retrieve UE context and to facilitate contention resolution by lower layers.ReestabUE-Identity,reestablishmentCauseIndicates the failure cause that triggered the re-establishment procedure. gNB is not expected to reject a RRCReestablishmentRequest due to unknown cause value being used by the UE.ReestablishmentCause, spare BIT STRING (SIZE (1)) } ReestabUE-Identity ::= SEQUENCE { c-RNTI RNTI-Value,physCellIdThe Physical Cell Identity of the PCell the UE was connected to prior to the failure.PhysCellId, shortMAC-I ShortMAC-I } ReestablishmentCause ::= ENUMERATED {reconfigurationFailure, handoverFailure, otherFailure, spare1} -- TAG-RRCREESTABLISHMENTREQUEST-STOP -- ASN1STOP
ReestabUE-Identity field descriptions |
---|
physCellId The Physical Cell Identity of the PCell the UE was connected to prior to the failure. |
RRCReestablishmentRequest-IEs field descriptions |
---|
reestablishmentCause Indicates the failure cause that triggered the re-establishment procedure. gNB is not expected to reject a RRCReestablishmentRequest due to unknown cause value being used by the UE. |
ue-Identity UE identity included to retrieve UE context and to facilitate contention resolution by lower layers. |
The RRCReconfiguration message is the command to modify an RRC connection. It may convey information for measurement configuration, mobility control, radio resource configuration (including RBs, MAC main configuration and physical channel configuration) and AS security configuration.
-- ASN1START -- TAG-RRCRECONFIGURATION-START RRCReconfiguration ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcReconfiguration RRCReconfiguration-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCReconfiguration-IEs ::= SEQUENCE {radioBearerConfigConfiguration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP. In (NG)EN-DC, this field may only be present if the RRCReconfiguration is transmitted over SRB3.RadioBearerConfig OPTIONAL, -- Need MsecondaryCellGroupConfiguration of secondary cell group ((NG)EN-DC or NR-DC).This field can only be present in an RRCReconfiguration message is transmitted on SRB3, and in an RRCReconfiguration message contained in another RRCReconfiguration message (or RRCConnectionReconfiguration message, see TS 36.331 [10]) transmitted on SRB1.OCTET STRING (CONTAINING CellGroupConfig) OPTIONAL, -- Need M measConfig MeasConfig OPTIONAL, -- Need M lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension RRCReconfiguration-v1530-IEs OPTIONAL } RRCReconfiguration-v1530-IEs ::= SEQUENCE {masterCellGroupConfiguration of master cell group.OCTET STRING (CONTAINING CellGroupConfig) OPTIONAL, -- Need MfullConfigIndicates that the full configuration option is applicable for the RRCReconfiguration message for intra-system intra-RAT HO. For inter-RAT HO from E-UTRA to NR, fullConfig indicates whether or not delta signalling of SDAP/PDCP from source RAT is applicable.This field is absent when the RRCReconfiguration message is transmitted on SRB3, and in an RRCReconfiguration message contained in another RRCReconfiguration message (or RRCConnectionReconfiguration message, see TS 36.331 [10]) transmitted on SRB1.ENUMERATED {true} OPTIONAL, -- Cond FullConfigdedicatedNAS-MessageListThis field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for each PDU in the list.SEQUENCE (SIZE(1..maxDRB)) OF DedicatedNAS-Message OPTIONAL, -- Cond nonHO masterKeyUpdate MasterKeyUpdate OPTIONAL, -- Cond MasterKeyChangededicatedSIB1-DeliveryThis field is used to transfer SIB1 to the UE.The field has the same values as the corresponding configuration in servingCellConfigCommon.OCTET STRING (CONTAINING SIB1) OPTIONAL, -- Need NdedicatedSystemInformationDeliveryThis field is used to transfer SIB6, SIB7, SIB8 to the UE.OCTET STRING (CONTAINING SystemInformation) OPTIONAL, -- Need NotherConfigContains configuration related to other configurations.OtherConfig OPTIONAL, -- Need M nonCriticalExtension RRCReconfiguration-v1540-IEs OPTIONAL } RRCReconfiguration-v1540-IEs ::= SEQUENCE { otherConfig-v1540 OtherConfig-v1540 OPTIONAL, -- Need M nonCriticalExtension RRCReconfiguration-v1560-IEs OPTIONAL } RRCReconfiguration-v1560-IEs ::= SEQUENCE { mrdc-SecondaryCellGroupConfig SetupRelease { MRDC-SecondaryCellGroupConfig } OPTIONAL, -- Need MradioBearerConfig2Configuration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP. This field can only be used if the UE supports NR-DC or NE-DC.OCTET STRING (CONTAINING RadioBearerConfig) OPTIONAL, -- Need Msk-CounterA counter used upon initial configuration of S-KgNB or S-KeNB, as well as upon refresh of S-KgNB or S-KeNB. This field is always included either upon initial configuration of an NR SCG or upon configuration of the first RB with keyToUse set to secondary, whichever happens first. This field is absent if there is neither any NR SCG nor any RB with keyToUse set to secondary.SK-Counter OPTIONAL, -- Need N nonCriticalExtension SEQUENCE {} OPTIONAL } MRDC-SecondaryCellGroupConfig ::= SEQUENCE {mrdc-ReleaseAndAddThis field indicates that the current SCG configuration is released and a new SCG is added at the same time.ENUMERATED {true} OPTIONAL, -- Need Nmrdc-SecondaryCellGroupIncludes an RRC message for SCG configuration in NR-DC or NE-DC.For NR-DC (nr-SCG), mrdc-SecondaryCellGroup contains the RRCReconfiguration message as generated (entirely) by SN gNB. In this version of the specification, the RRC message can only include fields secondaryCellGroup and measConfig. For NE-DC (eutra-SCG), mrdc-SecondaryCellGroup includes the E-UTRA RRCConnectionReconfiguration message as specified in TS 36.331 [10]. In this version of the specification, the E-UTRA RRC message can only include the field scg-Configuration.CHOICE { nr-SCG OCTET STRING (CONTAINING RRCReconfiguration), eutra-SCG OCTET STRING } } MasterKeyUpdate ::= SEQUENCE {keySetChangeIndicatorIndicates whether UE shall derive a new KgNB. If reconfigurationWithSync is included, value trueindicates that a KgNB key is derived from a KAMF key taken into use through the latest successful NAS SMC procedure, or N2 handover procedure with KAMF change, as described in TS 33.501 [11] for KgNB re-keying. Value falseindicates that the new KgNB key is obtained from the current KgNB key or from the NH as described in TS 33.501 [11].BOOLEAN,nextHopChainingCountParameter NCC: See TS 33.501 [11]NextHopChainingCount,nas-ContainerThis field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for this field, although it affects activation of AS security after inter-system handover to NR. The content is defined in TS 24.501 [23].OCTET STRING OPTIONAL, -- Cond securityNASC ... } -- TAG-RRCRECONFIGURATION-STOP -- ASN1STOP
RRCReconfiguration-IEs field descriptions |
---|
dedicatedNAS-MessageList This field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for each PDU in the list. |
dedicatedSIB1-Delivery This field is used to transfer SIB1 to the UE.The field has the same values as the corresponding configuration in servingCellConfigCommon. |
dedicatedSystemInformationDelivery This field is used to transfer SIB6, SIB7, SIB8 to the UE. |
fullConfig Indicates that the full configuration option is applicable for the RRCReconfiguration message for intra-system intra-RAT HO. For inter-RAT HO from E-UTRA to NR, fullConfig indicates whether or not delta signalling of SDAP/PDCP from source RAT is applicable.This field is absent when the RRCReconfiguration message is transmitted on SRB3, and in an RRCReconfiguration message contained in another RRCReconfiguration message (or RRCConnectionReconfiguration message, see TS 36.331 [10]) transmitted on SRB1. |
keySetChangeIndicator Indicates whether UE shall derive a new KgNB. If reconfigurationWithSync is included, value trueindicates that a KgNB key is derived from a KAMF key taken into use through the latest successful NAS SMC procedure, or N2 handover procedure with KAMF change, as described in TS 33.501 [11] for KgNB re-keying. Value falseindicates that the new KgNB key is obtained from the current KgNB key or from the NH as described in TS 33.501 [11]. |
masterCellGroup Configuration of master cell group. |
mrdc-ReleaseAndAdd This field indicates that the current SCG configuration is released and a new SCG is added at the same time. |
mrdc-SecondaryCellGroup Includes an RRC message for SCG configuration in NR-DC or NE-DC.For NR-DC (nr-SCG), mrdc-SecondaryCellGroup contains the RRCReconfiguration message as generated (entirely) by SN gNB. In this version of the specification, the RRC message can only include fields secondaryCellGroup and measConfig. For NE-DC (eutra-SCG), mrdc-SecondaryCellGroup includes the E-UTRA RRCConnectionReconfiguration message as specified in TS 36.331 [10]. In this version of the specification, the E-UTRA RRC message can only include the field scg-Configuration. |
nas-Container This field is used to transfer UE specific NAS layer information between the network and the UE. The RRC layer is transparent for this field, although it affects activation of AS security after inter-system handover to NR. The content is defined in TS 24.501 [23]. |
nextHopChainingCount Parameter NCC: See TS 33.501 [11] |
otherConfig Contains configuration related to other configurations. |
radioBearerConfig Configuration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP. In (NG)EN-DC, this field may only be present if the RRCReconfiguration is transmitted over SRB3. |
radioBearerConfig2 Configuration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP. This field can only be used if the UE supports NR-DC or NE-DC. |
secondaryCellGroup Configuration of secondary cell group ((NG)EN-DC or NR-DC).This field can only be present in an RRCReconfiguration message is transmitted on SRB3, and in an RRCReconfiguration message contained in another RRCReconfiguration message (or RRCConnectionReconfiguration message, see TS 36.331 [10]) transmitted on SRB1. |
sk-Counter A counter used upon initial configuration of S-KgNB or S-KeNB, as well as upon refresh of S-KgNB or S-KeNB. This field is always included either upon initial configuration of an NR SCG or upon configuration of the first RB with keyToUse set to secondary, whichever happens first. This field is absent if there is neither any NR SCG nor any RB with keyToUse set to secondary. |
Conditional Presence | Explanation |
---|---|
nonHO | The field is absent in case of reconfiguration with sync within NR or to NR; otherwise it is optionally present, need N. |
securityNASC | This field is mandatory present in case of inter system handover. Otherwise the field is optionally present, need N. |
MasterKeyChange | This field is mandatory present in case masterCellGroup includes ReconfigurationWithSync and RadioBearerConfig includes SecurityConfig with SecurityAlgorithmConfig, indicating a change of the AS security algorithms associated to the master key. If ReconfigurationWithSync is included for other cases, this field is optionally present, need N.Otherwise the field is absent. |
FullConfig | The field is mandatory present in case of inter-system handover from E-UTRA/EPC to NR.It is optionally present, Need N, during reconfiguration with sync and also in first reconfiguration after reestablishment; or for intra-system handover from E-UTRA/5GC to NR. It is absent otherwise. |
The RRCReconfigurationComplete message is used to confirm the successful completion of an RRC connection reconfiguration.
-- ASN1START -- TAG-RRCRECONFIGURATIONCOMPLETE-START RRCReconfigurationComplete ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcReconfigurationComplete RRCReconfigurationComplete-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCReconfigurationComplete-IEs ::= SEQUENCE { lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension RRCReconfigurationComplete-v1530-IEs OPTIONAL } RRCReconfigurationComplete-v1530-IEs ::= SEQUENCE {uplinkTxDirectCurrentListThe Tx Direct Current locations for the configured serving cells and BWPs if requested by the NW (see reportUplinkTxDirectCurrent in CellGroupConfig).UplinkTxDirectCurrentList OPTIONAL, nonCriticalExtension RRCReconfigurationComplete-v1560-IEs OPTIONAL } RRCReconfigurationComplete-v1560-IEs ::= SEQUENCE {scg-ResponseIn case of NR-DC (nr-SCG-Response), this field includes the RRCReconfigurationComplete message. In case of NE-DC (eutra-SCG-Response), this field includes the E-UTRA RRCConnectionReconfigurationComplete message as specified in TS 36.331 [10].CHOICE { nr-SCG-Response OCTET STRING (CONTAINING RRCReconfigurationComplete), eutra-SCG-Response OCTET STRING } OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-RRCRECONFIGURATIONCOMPLETE-STOP -- ASN1STOP
RRCReconfigurationComplete-IEs field descriptions |
---|
scg-Response In case of NR-DC (nr-SCG-Response), this field includes the RRCReconfigurationComplete message. In case of NE-DC (eutra-SCG-Response), this field includes the E-UTRA RRCConnectionReconfigurationComplete message as specified in TS 36.331 [10]. |
uplinkTxDirectCurrentList The Tx Direct Current locations for the configured serving cells and BWPs if requested by the NW (see reportUplinkTxDirectCurrent in CellGroupConfig). |
The RRCReject message is used to reject an RRC connection establishment or an RRC connection resumption.
-- ASN1START -- TAG-RRCREJECT-START RRCReject ::= SEQUENCE { criticalExtensions CHOICE { rrcReject RRCReject-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCReject-IEs ::= SEQUENCE {waitTimeWait time value in seconds. The field is always included.RejectWaitTime OPTIONAL, -- Need N lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-RRCREJECT-STOP -- ASN1STOP
RRCReject-IEs field descriptions |
---|
waitTime Wait time value in seconds. The field is always included. |
The RRCRelease message is used to command the release of an RRC connection or the suspension of the RRC connection.
-- ASN1START -- TAG-RRCRELEASE-START RRCRelease ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcRelease RRCRelease-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCRelease-IEs ::= SEQUENCE {redirectedCarrierInfoIndicates a carrier frequency (downlink for FDD) and is used to redirect the UE to an NR or an inter-RAT carrier frequency, by means of cell selection at transition to RRC_IDLE or RRC_INACTIVE as specified in TS 38.304 [20]. In this release of specification, redirectedCarrierInfois not included in an RRCRelease message with suspendConfig if this message is in response to an RRCResumeRequest or an RRCResumeRequest1 which is triggered by the NAS layer.RedirectedCarrierInfo OPTIONAL, -- Need N cellReselectionPriorities CellReselectionPriorities OPTIONAL, -- Need RsuspendConfigIndicates configuration for the RRC_INACTIVE state. The network does not configure suspendConfig when the network redirect the UE to an inter-RAT carrier frequency.SuspendConfig OPTIONAL, -- Need RdeprioritisationReqIndicates whether the current frequency or RAT is to be de-prioritised.SEQUENCE { deprioritisationType ENUMERATED {frequency, nr},deprioritisationTimerIndicates the period for which either the current carrier frequency or NR is deprioritised. Value minN corresponds to N minutes.ENUMERATED {min5, min10, min15, min30} } OPTIONAL, -- Need N lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension RRCRelease-v1540-IEs OPTIONAL } RRCRelease-v1540-IEs ::= SEQUENCE { waitTime RejectWaitTime OPTIONAL, -- Need N nonCriticalExtension SEQUENCE {} OPTIONAL } RedirectedCarrierInfo ::= CHOICE { nr CarrierInfoNR, eutra RedirectedCarrierInfo-EUTRA, ... } RedirectedCarrierInfo-EUTRA ::= SEQUENCE { eutraFrequency ARFCN-ValueEUTRA,cnTypeIndicate that the UE is redirected to EPC or 5GC.ENUMERATED {epc,fiveGC} OPTIONAL -- Need N } CarrierInfoNR ::= SEQUENCE {carrierFreqIndicates the redirected NR frequency.ARFCN-ValueNR,ssbSubcarrierSpacingSubcarrier spacing of SSB in the redirected SSB frequency. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable.SubcarrierSpacing,smtcThe SSB periodicity/offset/duration configuration for the redirected SSB frequency. It is based on timing reference of PCell. If the field is absent, the UE uses the SMTC configured in the measObjectNR having the same SSB frequency and subcarrier spacing.SSB-MTC OPTIONAL, -- Need S ... } SuspendConfig ::= SEQUENCE { fullI-RNTI I-RNTI-Value, shortI-RNTI ShortI-RNTI-Value,ran-PagingCycleRefers to the UE specific cycle for RAN-initiated paging. Value rf32 corresponds to 32 radio frames, value rf64 corresponds to 64 radio frames and so on.PagingCycle,ran-NotificationAreaInfoNetwork ensures that the UE in RRC_INACTIVE always has a valid ran-NotificationAreaInfo.RAN-NotificationAreaInfo OPTIONAL, -- Need Mt380Refers to the timer that triggers the periodic RNAU procedure in UE. Value min5 corresponds to 5 minutes, value min10 corresponds to 10 minutes and so on.PeriodicRNAU-TimerValue OPTIONAL, -- Need R nextHopChainingCount NextHopChainingCount, ... } PeriodicRNAU-TimerValue ::= ENUMERATED { min5, min10, min20, min30, min60, min120, min360, min720} CellReselectionPriorities ::= SEQUENCE { freqPriorityListEUTRA FreqPriorityListEUTRA OPTIONAL, -- Need M freqPriorityListNR FreqPriorityListNR OPTIONAL, -- Need M t320 ENUMERATED {min5, min10, min20, min30, min60, min120, min180, spare1} OPTIONAL, -- Need R ... } PagingCycle ::= ENUMERATED {rf32, rf64, rf128, rf256} FreqPriorityListEUTRA ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityEUTRA FreqPriorityListNR ::= SEQUENCE (SIZE (1..maxFreq)) OF FreqPriorityNR FreqPriorityEUTRA ::= SEQUENCE {carrierFreqIndicates the redirected NR frequency.ARFCN-ValueEUTRA, cellReselectionPriority CellReselectionPriority, cellReselectionSubPriority CellReselectionSubPriority OPTIONAL -- Need R } FreqPriorityNR ::= SEQUENCE {carrierFreqIndicates the redirected NR frequency.ARFCN-ValueNR, cellReselectionPriority CellReselectionPriority, cellReselectionSubPriority CellReselectionSubPriority OPTIONAL -- Need R } RAN-NotificationAreaInfo ::= CHOICE {cellListA list of cells configured as RAN area.PLMN-RAN-AreaCellList,ran-AreaConfigListA list of RAN area codes or RA code(s) as RAN area.PLMN-RAN-AreaConfigList, ... } PLMN-RAN-AreaCellList ::= SEQUENCE (SIZE (1.. maxPLMNIdentities)) OF PLMN-RAN-AreaCell PLMN-RAN-AreaCell ::= SEQUENCE {plmn-IdentityPLMN Identity to which the cells in ran-AreaCells belong. If the field is absent the UE uses the ID of the registered PLMN.PLMN-Identity OPTIONAL, -- Need Sran-AreaCellsThe total number of cells of all PLMNs does not exceed 32.SEQUENCE (SIZE (1..32)) OF CellIdentity } PLMN-RAN-AreaConfigList ::= SEQUENCE (SIZE (1..maxPLMNIdentities)) OF PLMN-RAN-AreaConfig PLMN-RAN-AreaConfig ::= SEQUENCE {plmn-IdentityPLMN Identity to which the cells in ran-AreaCells belong. If the field is absent the UE uses the ID of the registered PLMN.PLMN-Identity OPTIONAL, -- Need Sran-AreaIndicates whether TA code(s) or RAN area code(s) are used for the RAN notification area. The network uses only TA code(s) or both TA code(s) and RAN area code(s) to configure a UE. The total number of TACs across all PLMNs does not exceed 16.SEQUENCE (SIZE (1..16)) OF RAN-AreaConfig } RAN-AreaConfig ::= SEQUENCE { trackingAreaCode TrackingAreaCode,ran-AreaCodeListThe total number of RAN-AreaCodes of all PLMNs does not exceed 32.SEQUENCE (SIZE (1..32)) OF RAN-AreaCode OPTIONAL -- Need R } -- TAG-RRCRELEASE-STOP -- ASN1STOP
RRCRelease-IEs field descriptions |
---|
cnType Indicate that the UE is redirected to EPC or 5GC. |
deprioritisationReq Indicates whether the current frequency or RAT is to be de-prioritised. |
deprioritisationTimer Indicates the period for which either the current carrier frequency or NR is deprioritised. Value minN corresponds to N minutes. |
suspendConfig Indicates configuration for the RRC_INACTIVE state. The network does not configure suspendConfig when the network redirect the UE to an inter-RAT carrier frequency. |
redirectedCarrierInfo Indicates a carrier frequency (downlink for FDD) and is used to redirect the UE to an NR or an inter-RAT carrier frequency, by means of cell selection at transition to RRC_IDLE or RRC_INACTIVE as specified in TS 38.304 [20]. In this release of specification, redirectedCarrierInfois not included in an RRCRelease message with suspendConfig if this message is in response to an RRCResumeRequest or an RRCResumeRequest1 which is triggered by the NAS layer. |
CarrierInfoNR field descriptions |
---|
carrierFreq Indicates the redirected NR frequency. |
ssbSubcarrierSpacing Subcarrier spacing of SSB in the redirected SSB frequency. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable. |
smtc The SSB periodicity/offset/duration configuration for the redirected SSB frequency. It is based on timing reference of PCell. If the field is absent, the UE uses the SMTC configured in the measObjectNR having the same SSB frequency and subcarrier spacing. |
RAN-NotificationAreaInfo field descriptions |
---|
cellList A list of cells configured as RAN area. |
ran-AreaConfigList A list of RAN area codes or RA code(s) as RAN area. |
PLMN-RAN-AreaConfig field descriptions |
---|
plmn-Identity PLMN Identity to which the cells in ran-Area belong. If the field is absent the UE uses the ID of the registered PLMN. |
ran-AreaCodeList The total number of RAN-AreaCodes of all PLMNs does not exceed 32. |
ran-Area Indicates whether TA code(s) or RAN area code(s) are used for the RAN notification area. The network uses only TA code(s) or both TA code(s) and RAN area code(s) to configure a UE. The total number of TACs across all PLMNs does not exceed 16. |
PLMN-RAN-AreaCell field descriptions |
---|
plmn-Identity PLMN Identity to which the cells in ran-AreaCells belong. If the field is absent the UE uses the ID of the registered PLMN. |
ran-AreaCells The total number of cells of all PLMNs does not exceed 32. |
SuspendConfig field descriptions |
---|
ran-NotificationAreaInfo Network ensures that the UE in RRC_INACTIVE always has a valid ran-NotificationAreaInfo. |
ran-PagingCycle Refers to the UE specific cycle for RAN-initiated paging. Value rf32 corresponds to 32 radio frames, value rf64 corresponds to 64 radio frames and so on. |
t380 Refers to the timer that triggers the periodic RNAU procedure in UE. Value min5 corresponds to 5 minutes, value min10 corresponds to 10 minutes and so on. |
The RRCResume message is used to resume the suspended RRC connection.
-- ASN1START -- TAG-RRCRESUME-START RRCResume ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcResume RRCResume-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCResume-IEs ::= SEQUENCE {radioBearerConfigConfiguration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP.RadioBearerConfig OPTIONAL, -- Need MmasterCellGroupConfiguration of the master cell group.OCTET STRING (CONTAINING CellGroupConfig) OPTIONAL, -- Need M measConfig MeasConfig OPTIONAL, -- Need M fullConfig ENUMERATED {true} OPTIONAL, -- Need N lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension RRCResume-v1560-IEs OPTIONAL } RRCResume-v1560-IEs ::= SEQUENCE {radioBearerConfig2Configuration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP. This field can only be used if the UE supports NR-DC or NE-DC.OCTET STRING (CONTAINING RadioBearerConfig) OPTIONAL, -- Need Msk-CounterA counter used to derive S-KgNB or S-KeNB based on the newly derived KgNB during RRC Resume. The field is only included when there is one or more RB with keyToUse set to secondary.SK-Counter OPTIONAL, -- Need N nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-RRCRESUME-STOP -- ASN1STOP
RRCResume-IEs field descriptions |
---|
masterCellGroup Configuration of the master cell group. |
radioBearerConfig Configuration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP. |
radioBearerConfig2 Configuration of Radio Bearers (DRBs, SRBs) including SDAP/PDCP. This field can only be used if the UE supports NR-DC or NE-DC. |
sk-Counter A counter used to derive S-KgNB or S-KeNB based on the newly derived KgNB during RRC Resume. The field is only included when there is one or more RB with keyToUse set to secondary. |
The RRCResumeComplete message is used to confirm the successful completion of an RRC connection resumption.
-- ASN1START -- TAG-RRCRESUMECOMPLETE-START RRCResumeComplete ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcResumeComplete RRCResumeComplete-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCResumeComplete-IEs ::= SEQUENCE { dedicatedNAS-Message DedicatedNAS-Message OPTIONAL,selectedPLMN-IdentityIndex of the PLMN selected by the UE from the plmn-IdentityInfoList fields included in SIB1.INTEGER (1..maxPLMN) OPTIONAL,uplinkTxDirectCurrentListThe Tx Direct Current locations for the configured serving cells and BWPs if requested by the NW (see reportUplinkTxDirectCurrent in CellGroupConfig).UplinkTxDirectCurrentList OPTIONAL, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-RRCRESUMECOMPLETE-STOP -- ASN1STOP
RRCResumeComplete-IEs field descriptions |
---|
selectedPLMN-Identity Index of the PLMN selected by the UE from the plmn-IdentityInfoList fields included in SIB1. |
uplinkTxDirectCurrentList The Tx Direct Current locations for the configured serving cells and BWPs if requested by the NW (see reportUplinkTxDirectCurrent in CellGroupConfig). |
The RRCResumeRequest message is used to request the resumption of a suspended RRC connection or perform an RNA update.
-- ASN1START -- TAG-RRCRESUMEREQUEST-START RRCResumeRequest ::= SEQUENCE { rrcResumeRequest RRCResumeRequest-IEs } RRCResumeRequest-IEs ::= SEQUENCE {resumeIdentityUE identity to facilitate UE context retrieval at gNB.ShortI-RNTI-Value,resumeMAC-IAuthentication token to facilitate UE authentication at gNB. The 16 least significant bits of the MAC-I calculated using the AS security configuration as specified in 5.3.13.3.BIT STRING (SIZE (16)),resumeCauseProvides the resume cause for the RRC connection resume request as provided by the upper layers or RRC. The network is not expected to reject anRRCResumeRequest due to unknown cause value being used by the UE.ResumeCause, spare BIT STRING (SIZE (1)) } -- TAG-RRCRESUMEREQUEST-STOP -- ASN1STOP
RRCResumeRequest-IEs field descriptions |
---|
resumeCause Provides the resume cause for the RRC connection resume request as provided by the upper layers or RRC. The network is not expected to reject anRRCResumeRequest due to unknown cause value being used by the UE. |
resumeIdentity UE identity to facilitate UE context retrieval at gNB. |
resumeMAC-I Authentication token to facilitate UE authentication at gNB. The 16 least significant bits of the MAC-I calculated using the AS security configuration as specified in 5.3.13.3. |
The RRCResumeRequest1 message is used to request the resumption of a suspended RRC connection or perform an RNA update.
-- ASN1START -- TAG-RRCRESUMEREQUEST1-START RRCResumeRequest1 ::= SEQUENCE { rrcResumeRequest1 RRCResumeRequest1-IEs } RRCResumeRequest1-IEs ::= SEQUENCE {resumeIdentityUE identity to facilitate UE context retrieval at gNB.I-RNTI-Value,resumeMAC-IAuthentication token to facilitate UE authentication at gNB. The 16 least significant bits of the MAC-I calculated using the AS security configuration as specified in 5.3.13.3.BIT STRING (SIZE (16)),resumeCauseProvides the resume cause for theRRCResumeRequest1 as provided by the upper layers or RRC. A gNB is not expected to reject anRRCResumeRequest1 due to unknown cause value being used by the UE.ResumeCause, spare BIT STRING (SIZE (1)) } -- TAG-RRCRESUMEREQUEST1-STOP -- ASN1STOP
RRCResumeRequest1-IEs field descriptions |
---|
resumeCause Provides the resume cause for theRRCResumeRequest1 as provided by the upper layers or RRC. A gNB is not expected to reject anRRCResumeRequest1 due to unknown cause value being used by the UE. |
resumeIdentity UE identity to facilitate UE context retrieval at gNB. |
resumeMAC-I Authentication token to facilitate UE authentication at gNB. The 16 least significant bits of the MAC-I calculated using the AS security configuration as specified in 5.3.13.3. |
The RRCSetup message is used to establish SRB1.
-- ASN1START -- TAG-RRCSETUP-START RRCSetup ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcSetup RRCSetup-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCSetup-IEs ::= SEQUENCE {radioBearerConfigOnly SRB1 can be configured in RRC setup.RadioBearerConfig,masterCellGroupThe network configures only the RLC bearer for the SRB1, mac-CellGroupConfig, physicalCellGroupConfig and spCellConfig.OCTET STRING (CONTAINING CellGroupConfig), lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-RRCSETUP-STOP -- ASN1STOP
RRCSetup-IEs field descriptions |
---|
masterCellGroup The network configures only the RLC bearer for the SRB1, mac-CellGroupConfig, physicalCellGroupConfig and spCellConfig. |
radioBearerConfig Only SRB1 can be configured in RRC setup. |
The RRCSetupComplete message is used to confirm the successful completion of an RRC connection establishment.
-- ASN1START -- TAG-RRCSETUPCOMPLETE-START RRCSetupComplete ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { rrcSetupComplete RRCSetupComplete-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCSetupComplete-IEs ::= SEQUENCE {selectedPLMN-IdentityIndex of the PLMN selected by the UE from the plmn-IdentityInfoList fields included in SIB1.INTEGER (1..maxPLMN),registeredAMFThis field is used to transfer the GUAMI of the AMF where the UE is registered, as provided by upper layers, see TS 23.003 [21].RegisteredAMF OPTIONAL,guami-TypeThis field is used to indicate whether the GUAMI included is native (derived from native 5G-GUTI) or mapped (from EPS, derived from EPS GUTI) as specified in TS 24.501 [23].ENUMERATED {native, mapped} OPTIONAL, s-NSSAI-List SEQUENCE (SIZE (1..maxNrofS-NSSAI)) OF S-NSSAI OPTIONAL, dedicatedNAS-Message DedicatedNAS-Message, ng-5G-S-TMSI-Value CHOICE { ng-5G-S-TMSI NG-5G-S-TMSI,ng-5G-S-TMSI-Part2The leftmost 9 bits of 5G-S-TMSI.BIT STRING (SIZE (9)) } OPTIONAL, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } RegisteredAMF ::= SEQUENCE { plmn-Identity PLMN-Identity OPTIONAL, amf-Identifier AMF-Identifier } -- TAG-RRCSETUPCOMPLETE-STOP -- ASN1STOP
RRCSetupComplete-IEs field descriptions |
---|
guami-Type This field is used to indicate whether the GUAMI included is native (derived from native 5G-GUTI) or mapped (from EPS, derived from EPS GUTI) as specified in TS 24.501 [23]. |
ng-5G-S-TMSI-Part2 The leftmost 9 bits of 5G-S-TMSI. |
registeredAMF This field is used to transfer the GUAMI of the AMF where the UE is registered, as provided by upper layers, see TS 23.003 [21]. |
selectedPLMN-Identity Index of the PLMN selected by the UE from the plmn-IdentityInfoList fields included in SIB1. |
The RRCSetupRequest message is used to request the establishment of an RRC connection.
-- ASN1START -- TAG-RRCSETUPREQUEST-START RRCSetupRequest ::= SEQUENCE { rrcSetupRequest RRCSetupRequest-IEs } RRCSetupRequest-IEs ::= SEQUENCE {ue-IdentityUE identity included to facilitate contention resolution by lower layers.InitialUE-Identity,establishmentCauseProvides the establishment cause for the RRCSetupRequest in accordance with the information received from upper layers. gNB is not expected to reject anRRCSetupRequest due to unknown cause value being used by the UE.EstablishmentCause, spare BIT STRING (SIZE (1)) } InitialUE-Identity ::= CHOICE {ng-5G-S-TMSI-Part1The rightmost 39 bits of 5G-S-TMSI.BIT STRING (SIZE (39)),randomValueInteger value in the range 0 to 239– 1.BIT STRING (SIZE (39)) } EstablishmentCause ::= ENUMERATED { emergency, highPriorityAccess, mt-Access, mo-Signalling, mo-Data, mo-VoiceCall, mo-VideoCall, mo-SMS, mps-PriorityAccess, mcs-PriorityAccess, spare6, spare5, spare4, spare3, spare2, spare1} -- TAG-RRCSETUPREQUEST-STOP -- ASN1STOP
RRCSetupRequest-IEs field descriptions |
---|
establishmentCause Provides the establishment cause for the RRCSetupRequest in accordance with the information received from upper layers. gNB is not expected to reject anRRCSetupRequest due to unknown cause value being used by the UE. |
ue-Identity UE identity included to facilitate contention resolution by lower layers. |
InitialUE-Identity field descriptions |
---|
ng-5G-S-TMSI-Part1 The rightmost 39 bits of 5G-S-TMSI. |
randomValue Integer value in the range 0 to 239– 1. |
The RRCSystemInfoRequest message is used to request SI message(s) required by the UE as specified in clause 5.2.2.3.3.
-- ASN1START -- TAG-RRCSYSTEMINFOREQUEST-START RRCSystemInfoRequest ::= SEQUENCE { criticalExtensions CHOICE { rrcSystemInfoRequest RRCSystemInfoRequest-IEs, criticalExtensionsFuture SEQUENCE {} } } RRCSystemInfoRequest-IEs ::= SEQUENCE {requested-SI-ListContains a list of requested SI messages. According to the order of entry in the list of SI messages configured by schedulingInfoList in si-SchedulingInfo in SIB1, first bit corresponds to first/leftmost listed SI message, second bit corresponds to second listed SI message, and so on.BIT STRING (SIZE (maxSI-Message)), --32bits spare BIT STRING (SIZE (12)) } -- TAG-RRCSYSTEMINFOREQUEST-STOP -- ASN1STOP
RRCSystemInfoRequest-IEs field descriptions |
---|
requested-SI-List Contains a list of requested SI messages. According to the order of entry in the list of SI messages configured by schedulingInfoList in si-SchedulingInfo in SIB1, first bit corresponds to first/leftmost listed SI message, second bit corresponds to second listed SI message, and so on. |
The SCGFailureInformation message is used to provide information regarding NR SCG failures detected by the UE.
-- ASN1START -- TAG-SCGFAILUREINFORMATION-START SCGFailureInformation ::= SEQUENCE { criticalExtensions CHOICE { scgFailureInformation SCGFailureInformation-IEs, criticalExtensionsFuture SEQUENCE {} } } SCGFailureInformation-IEs ::= SEQUENCE { failureReportSCG FailureReportSCG OPTIONAL, nonCriticalExtension SCGFailureInformation-v1590-IEs OPTIONAL } SCGFailureInformation-v1590-IEs ::= SEQUENCE { lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } FailureReportSCG ::= SEQUENCE { failureType ENUMERATED { t310-Expiry, randomAccessProblem, rlc-MaxNumRetx, synchReconfigFailureSCG, scg-ReconfigFailure, srb3-IntegrityFailure, spare2, spare1},measResultFreqListThe field contains available results of measurements on NR frequencies the UE is configured to measure by measConfig.MeasResultFreqList OPTIONAL,measResultSCG-FailureThe field contains the MeasResultSCG-Failure IE which includes available results of measurements on NR frequencies the UE is configured to measure by the NR SCG RRCReconfiguration message.OCTET STRING (CONTAINING MeasResultSCG-Failure) OPTIONAL, ... } MeasResultFreqList ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResult2NR -- TAG-SCGFAILUREINFORMATION-STOP -- ASN1STOP
SCGFailureInformation field descriptions |
---|
measResultFreqList The field contains available results of measurements on NR frequencies the UE is configured to measure by measConfig. |
measResultSCG-Failure The field contains the MeasResultSCG-Failure IE which includes available results of measurements on NR frequencies the UE is configured to measure by the NR SCG RRCReconfiguration message. |
The SCGFailureInformationEUTRA message is used to provide information regarding E-UTRA SCG failures detected by the UE.
-- ASN1START -- TAG-SCGFAILUREINFORMATIONEUTRA-START SCGFailureInformationEUTRA ::= SEQUENCE { criticalExtensions CHOICE { scgFailureInformationEUTRA SCGFailureInformationEUTRA-IEs, criticalExtensionsFuture SEQUENCE {} } } SCGFailureInformationEUTRA-IEs ::= SEQUENCE { failureReportSCG-EUTRA FailureReportSCG-EUTRA OPTIONAL, nonCriticalExtension SCGFailureInformationEUTRA-v1590-IEs OPTIONAL } SCGFailureInformationEUTRA-v1590-IEs ::= SEQUENCE { lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } FailureReportSCG-EUTRA ::= SEQUENCE { failureType ENUMERATED { t313-Expiry, randomAccessProblem, rlc-MaxNumRetx, scg-ChangeFailure, spare4, spare3, spare2, spare1}, measResultFreqListMRDC MeasResultFreqListFailMRDC OPTIONAL, measResultSCG-FailureMRDC OCTET STRING OPTIONAL, ... } MeasResultFreqListFailMRDC ::= SEQUENCE (SIZE (1.. maxFreq)) OF MeasResult2EUTRA -- TAG-SCGFAILUREINFORMATIONEUTRA-STOP -- ASN1STOP
The SecurityModeCommand message is used to command the activation of AS security.
-- ASN1START -- TAG-SECURITYMODECOMMAND-START SecurityModeCommand ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { securityModeCommand SecurityModeCommand-IEs, criticalExtensionsFuture SEQUENCE {} } } SecurityModeCommand-IEs ::= SEQUENCE { securityConfigSMC SecurityConfigSMC, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } SecurityConfigSMC ::= SEQUENCE { securityAlgorithmConfig SecurityAlgorithmConfig, ... } -- TAG-SECURITYMODECOMMAND-STOP -- ASN1STOP
SCGFailureInformationEUTRA field descriptions |
---|
measResultFreqListMRDC The field contains available results of measurements on E-UTRA frequencies the UE is configured to measure by measConfig. |
measResultSCG-FailureMRDC Includes the E-UTRA MeasResultSCG-FailureMRDC IE as specified in TS 36.331 [10]. The field contains available results of measurements on E-UTRA frequencies the UE is configured to measure by the E-UTRA RRCConnectionReconfiguration message. |
The SecurityModeComplete message is used to confirm the successful completion of a security mode command.
-- ASN1START -- TAG-SECURITYMODECOMPLETE-START SecurityModeComplete ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { securityModeComplete SecurityModeComplete-IEs, criticalExtensionsFuture SEQUENCE {} } } SecurityModeComplete-IEs ::= SEQUENCE { lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-SECURITYMODECOMPLETE-STOP -- ASN1STOP
The SecurityModeFailure message is used to indicate an unsuccessful completion of a security mode command.
-- ASN1START -- TAG-SECURITYMODEFAILURE-START SecurityModeFailure ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { securityModeFailure SecurityModeFailure-IEs, criticalExtensionsFuture SEQUENCE {} } } SecurityModeFailure-IEs ::= SEQUENCE { lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-SECURITYMODEFAILURE-STOP -- ASN1STOP
SIB1 contains information relevant when evaluating if a UE is allowed to access a cell and defines the scheduling of other system information. It also contains radio resource configuration information that is common for all UEs and barring information applied to the unified access control.
-- ASN1START -- TAG-SIB1-START SIB1 ::= SEQUENCE {cellSelectionInfoParameters for cell selection related to the serving cell.SEQUENCE {q-RxLevMinParameter "Qrxlevmin" in TS 38.304 [20], applicable for serving cell.Q-RxLevMin,q-RxLevMinOffsetParameter "Qrxlevminoffset" in TS 38.304 [20]. Actual value Qrxlevminoffset = field value * 2 [dB]. If absent, the UE applies the (default) value of 0 dB for Qrxlevminoffset. Affects the minimum required Rx level in the cell.INTEGER (1..8) OPTIONAL, -- Need Sq-RxLevMinSULParameter "Qrxlevmin" in TS 38.304 [20], applicable for serving cell.Q-RxLevMin OPTIONAL, -- Need Rq-QualMinParameter "Qqualmin" in TS 38.304 [20], applicable for serving cell. If the field is absent, the UE applies the (default) value of negative infinity for Qqualmin.Q-QualMin OPTIONAL, -- Need Sq-QualMinOffsetParameter "Qqualminoffset" in TS 38.304 [20]. Actual value Qqualminoffset = field value [dB]. If the field is absent, the UE applies the (default) value of 0 dB for Qqualminoffset.Affects the minimum required quality level in the cell.INTEGER (1..8) OPTIONAL -- Need S } OPTIONAL, -- Cond Standalone cellAccessRelatedInfo CellAccessRelatedInfo, connEstFailureControl ConnEstFailureControl OPTIONAL, -- Need R si-SchedulingInfo SI-SchedulingInfo OPTIONAL, -- Need RservingCellConfigCommonConfiguration of the serving cell.ServingCellConfigCommonSIB OPTIONAL, -- Need Rims-EmergencySupportIndicates whether the cell supports IMS emergency bearer services for UEs in limited service mode. If absent, IMS emergency call is not supported by the network in the cell for UEs in limited service mode.ENUMERATED {true} OPTIONAL, -- Need R eCallOverIMS-Support ENUMERATED {true} OPTIONAL, -- Cond Absentue-TimersAndConstantsTimer and constant values to be used by the UE. The cell operating as PCell always provides this field.UE-TimersAndConstants OPTIONAL, -- Need R uac-BarringInfo SEQUENCE {uac-BarringForCommonCommon access control parameters for each access category. Common values are used for all PLMNs, unless overwritten by the PLMN specific configuration provided in uac-BarringPerPLMN-List. The parameters are specified by providing an index to the set of configurations (uac-BarringInfoSetList). UE behaviour upon absence of this field is specified in clause 5.3.14.2.UAC-BarringPerCatList OPTIONAL, -- Need S uac-BarringPerPLMN-List UAC-BarringPerPLMN-List OPTIONAL, -- Need S uac-BarringInfoSetList UAC-BarringInfoSetList,uac-AccessCategory1-SelectionAssistanceInfoInformation used to determine whether Access Category 1 applies to the UE, as defined in TS 22.261 [25].CHOICE { plmnCommon UAC-AccessCategory1-SelectionAssistanceInfo, individualPLMNList SEQUENCE (SIZE (2..maxPLMN)) OF UAC-AccessCategory1-SelectionAssistanceInfo } OPTIONAL -- Need S } OPTIONAL, -- Need RuseFullResumeIDIndicates which resume identifier and Resume request message should be used. UE uses fullI-RNTI and RRCResumeRequest1 if the field is present, or shortI-RNTI and RRCResumeRequest if the field is absent.ENUMERATED {true} OPTIONAL, -- Need R lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } UAC-AccessCategory1-SelectionAssistanceInfo ::= ENUMERATED {a, b, c} -- TAG-SIB1-STOP -- ASN1STOP
SIB1 field descriptions |
---|
cellSelectionInfo Parameters for cell selection related to the serving cell. |
ims-EmergencySupport Indicates whether the cell supports IMS emergency bearer services for UEs in limited service mode. If absent, IMS emergency call is not supported by the network in the cell for UEs in limited service mode. |
q-QualMin Parameter "Qqualmin" in TS 38.304 [20], applicable for serving cell. If the field is absent, the UE applies the (default) value of negative infinity for Qqualmin. |
q-QualMinOffset Parameter "Qqualminoffset" in TS 38.304 [20]. Actual value Qqualminoffset = field value [dB]. If the field is absent, the UE applies the (default) value of 0 dB for Qqualminoffset.Affects the minimum required quality level in the cell. |
q-RxLevMin Parameter "Qrxlevmin" in TS 38.304 [20], applicable for serving cell. |
q-RxLevMinOffset Parameter "Qrxlevminoffset" in TS 38.304 [20]. Actual value Qrxlevminoffset = field value * 2 [dB]. If absent, the UE applies the (default) value of 0 dB for Qrxlevminoffset. Affects the minimum required Rx level in the cell. |
q-RxLevMinSUL Parameter "Qrxlevmin" in TS 38.304 [20], applicable for serving cell. |
servingCellConfigCommon Configuration of the serving cell. |
uac-AccessCategory1-SelectionAssistanceInfo Information used to determine whether Access Category 1 applies to the UE, as defined in TS 22.261 [25]. |
uac-BarringForCommon Common access control parameters for each access category. Common values are used for all PLMNs, unless overwritten by the PLMN specific configuration provided in uac-BarringPerPLMN-List. The parameters are specified by providing an index to the set of configurations (uac-BarringInfoSetList). UE behaviour upon absence of this field is specified in clause 5.3.14.2. |
ue-TimersAndConstants Timer and constant values to be used by the UE. The cell operating as PCell always provides this field. |
useFullResumeID Indicates which resume identifier and Resume request message should be used. UE uses fullI-RNTI and RRCResumeRequest1 if the field is present, or shortI-RNTI and RRCResumeRequest if the field is absent. |
Conditional Presence | Explanation |
---|---|
Absent | The field is not used in this version of the specification, if received the UE shall ignore. |
Standalone | The field is mandatory present in a cell that supports standalone operation, otherwise it is absent. |
The SystemInformation message is used to convey one or more System Information Blocks. All the SIBs included are transmitted with the same periodicity.
-- ASN1START -- TAG-SYSTEMINFORMATION-START SystemInformation ::= SEQUENCE { criticalExtensions CHOICE { systemInformation SystemInformation-IEs, criticalExtensionsFuture SEQUENCE {} } } SystemInformation-IEs ::= SEQUENCE { sib-TypeAndInfo SEQUENCE (SIZE (1..maxSIB)) OF CHOICE { sib2 SIB2, sib3 SIB3, sib4 SIB4, sib5 SIB5, sib6 SIB6, sib7 SIB7, sib8 SIB8, sib9 SIB9, ... }, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-SYSTEMINFORMATION-STOP -- ASN1STOP
The UEAssistanceInformation message is used for the indication of UE assistance information to the network.
-- ASN1START -- TAG-UEASSISTANCEINFORMATION-START UEAssistanceInformation ::= SEQUENCE { criticalExtensions CHOICE { ueAssistanceInformation UEAssistanceInformation-IEs, criticalExtensionsFuture SEQUENCE {} } } UEAssistanceInformation-IEs ::= SEQUENCE {delayBudgetReportIndicates the UE-preferred adjustment to connected mode DRX.DelayBudgetReport OPTIONAL, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension UEAssistanceInformation-v1540-IEs OPTIONAL } DelayBudgetReport::= CHOICE {type1Indicates the preferred amount of increment/decrement to the long DRX cycle length with respect to the current configuration. Value in number of milliseconds. Value ms40 corresponds to 40 milliseconds, msMinus40 corresponds to -40 milliseconds and so on.ENUMERATED { msMinus1280, msMinus640, msMinus320, msMinus160,msMinus80, msMinus60, msMinus40, msMinus20, ms0, ms20,ms40, ms60, ms80, ms160, ms320, ms640, ms1280}, ... } UEAssistanceInformation-v1540-IEs ::= SEQUENCE { overheatingAssistance OverheatingAssistance OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } OverheatingAssistance ::= SEQUENCE { reducedMaxCCs SEQUENCE {reducedCCsDLIndicates the UE's preference on reduced configuration corresponding to the maximum number of downlink SCells indicated by the field, to address overheating. This maximum number includes both SCells of the MCG and PSCell/SCells of the SCG.INTEGER (0..31),reducedCCsULIndicates the UE's preference on reduced configuration corresponding to the maximum number of uplink SCells indicated by the field, to address overheating. This maximum number includes both SCells of the MCG and PSCell/SCells of the SCG.INTEGER (0..31) } OPTIONAL, reducedMaxBW-FR1 SEQUENCE {reducedBW-FR1-DLIndicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all downlink carrier(s) of FR1 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR1. This maximum aggregated bandwidth includes downlink carrier(s) of FR1 of both the MCG and the SCG. Value mhz0 is not used. The aggregated bandwidth across all downlink carrier(s) of FR1 is the sum of bandwidth of active downlink BWP(s) across all activated downlink carrier(s) of FR1.ReducedAggregatedBandwidth,reducedBW-FR1-ULIndicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all uplink carrier(s)of FR1 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR1. This maximum aggregated bandwidth includes uplink carrier(s)of FR1 of both the MCG and the SCG. Value mhz0 is not used. The aggregated bandwidth across all uplink carrier(s) of FR1 is the sum of bandwidth of active uplink BWP(s) across all activated uplink carrier(s) of FR1.ReducedAggregatedBandwidth } OPTIONAL, reducedMaxBW-FR2 SEQUENCE {reducedBW-FR2-DLIndicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all downlink carrier(s) of FR2 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR2.This maximum aggregated bandwidth includes downlink carrier(s)of FR2 of both the MCG and the NR SCG. The aggregated bandwidth across all downlink carrier(s) of FR2 is the sum of bandwidth of active downlink BWP(s) across all activated downlink carrier(s) of FR2.ReducedAggregatedBandwidth,reducedBW-FR2-ULIndicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all uplink carrier(s)of FR2 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR2. This maximum aggregated bandwidth includes uplink carrier(s)of FR2 of both the MCG and the NR SCG. The aggregated bandwidth across all uplink carrier(s) of FR2 is the sum of bandwidth of active uplink BWP(s) across all activated uplink carrier(s) of FR2.ReducedAggregatedBandwidth } OPTIONAL, reducedMaxMIMO-LayersFR1 SEQUENCE {reducedMIMO-LayersFR1-DLIndicates the UE's preference on reduced configuration corresponding to the maximum number of downlink MIMO layers of each serving cell operating on FR1 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cells operating on FR1.MIMO-LayersDL,reducedMIMO-LayersFR1-ULIndicates the UE's preference on reduced configuration corresponding to the maximum number of uplink MIMO layers of each serving cell operating on FR1 indicated by the field, to address overheating (see NOTE 1). This field is allowed to be reported only when UE is configured with serving cells operating on FR1.MIMO-LayersUL } OPTIONAL, reducedMaxMIMO-LayersFR2 SEQUENCE {reducedMIMO-LayersFR2-DLIndicates the UE's preference on reduced configuration corresponding to the maximum number of downlink MIMO layers of each serving cell operating on FR2 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cells operating on FR2.MIMO-LayersDL,reducedMIMO-LayersFR2-ULIndicates the UE's preference on reduced configuration corresponding to the maximum number of uplink MIMO layers of each serving cell operating on FR2 indicated by the field, to address overheating (see NOTE 1). This field is allowed to be reported only when UE is configured with serving cells operating on FR2.MIMO-LayersUL } OPTIONAL } ReducedAggregatedBandwidth ::= ENUMERATED {mhz0, mhz10, mhz20, mhz30, mhz40, mhz50, mhz60, mhz80, mhz100, mhz200, mhz300, mhz400} -- TAG-UEASSISTANCEINFORMATION-STOP -- ASN1STOP
UEAssistanceInformation field descriptions |
---|
delayBudgetReport Indicates the UE-preferred adjustment to connected mode DRX. |
reducedBW-FR1-DL Indicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all downlink carrier(s) of FR1 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR1. This maximum aggregated bandwidth includes downlink carrier(s) of FR1 of both the MCG and the SCG. Value mhz0 is not used. The aggregated bandwidth across all downlink carrier(s) of FR1 is the sum of bandwidth of active downlink BWP(s) across all activated downlink carrier(s) of FR1. |
reducedBW-FR1-UL Indicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all uplink carrier(s)of FR1 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR1. This maximum aggregated bandwidth includes uplink carrier(s)of FR1 of both the MCG and the SCG. Value mhz0 is not used. The aggregated bandwidth across all uplink carrier(s) of FR1 is the sum of bandwidth of active uplink BWP(s) across all activated uplink carrier(s) of FR1. |
reducedBW-FR2-DL Indicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all downlink carrier(s) of FR2 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR2.This maximum aggregated bandwidth includes downlink carrier(s)of FR2 of both the MCG and the NR SCG. The aggregated bandwidth across all downlink carrier(s) of FR2 is the sum of bandwidth of active downlink BWP(s) across all activated downlink carrier(s) of FR2. |
reducedBW-FR2-UL Indicates the UE's preference on reduced configuration corresponding to the maximum aggregated bandwidth across all uplink carrier(s)of FR2 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cell(s) operating on FR2. This maximum aggregated bandwidth includes uplink carrier(s)of FR2 of both the MCG and the NR SCG. The aggregated bandwidth across all uplink carrier(s) of FR2 is the sum of bandwidth of active uplink BWP(s) across all activated uplink carrier(s) of FR2. |
reducedCCsDL Indicates the UE's preference on reduced configuration corresponding to the maximum number of downlink SCells indicated by the field, to address overheating. This maximum number includes both SCells of the MCG and PSCell/SCells of the SCG. |
reducedCCsUL Indicates the UE's preference on reduced configuration corresponding to the maximum number of uplink SCells indicated by the field, to address overheating. This maximum number includes both SCells of the MCG and PSCell/SCells of the SCG. |
reducedMIMO-LayersFR1-DL Indicates the UE's preference on reduced configuration corresponding to the maximum number of downlink MIMO layers of each serving cell operating on FR1 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cells operating on FR1. |
reducedMIMO-LayersFR1-UL Indicates the UE's preference on reduced configuration corresponding to the maximum number of uplink MIMO layers of each serving cell operating on FR1 indicated by the field, to address overheating (see NOTE 1). This field is allowed to be reported only when UE is configured with serving cells operating on FR1. |
reducedMIMO-LayersFR2-DL Indicates the UE's preference on reduced configuration corresponding to the maximum number of downlink MIMO layers of each serving cell operating on FR2 indicated by the field, to address overheating. This field is allowed to be reported only when UE is configured with serving cells operating on FR2. |
reducedMIMO-LayersFR2-UL Indicates the UE's preference on reduced configuration corresponding to the maximum number of uplink MIMO layers of each serving cell operating on FR2 indicated by the field, to address overheating (see NOTE 1). This field is allowed to be reported only when UE is configured with serving cells operating on FR2. |
type1 Indicates the preferred amount of increment/decrement to the long DRX cycle length with respect to the current configuration. Value in number of milliseconds. Value ms40 corresponds to 40 milliseconds, msMinus40 corresponds to -40 milliseconds and so on. |
The UECapabilityEnquiry message is used to request UE radio access capabilities for NR as well as for other RATs.
-- ASN1START -- TAG-UECAPABILITYENQUIRY-START UECapabilityEnquiry ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { ueCapabilityEnquiry UECapabilityEnquiry-IEs, criticalExtensionsFuture SEQUENCE {} } } UECapabilityEnquiry-IEs ::= SEQUENCE { ue-CapabilityRAT-RequestList UE-CapabilityRAT-RequestList, lateNonCriticalExtension OCTET STRING OPTIONAL, ue-CapabilityEnquiryExt OCTET STRING (CONTAINING UECapabilityEnquiry-v1560-IEs) OPTIONAL -- Need N } UECapabilityEnquiry-v1560-IEs ::= SEQUENCE { capabilityRequestFilterCommon UE-CapabilityRequestFilterCommon OPTIONAL, -- Need N nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-UECAPABILITYENQUIRY-STOP -- ASN1STOP
The IE UECapabilityInformation message is used to transfer UE radio access capabilities requested by the network.
-- ASN1START -- TAG-UECAPABILITYINFORMATION-START UECapabilityInformation ::= SEQUENCE { rrc-TransactionIdentifier RRC-TransactionIdentifier, criticalExtensions CHOICE { ueCapabilityInformation UECapabilityInformation-IEs, criticalExtensionsFuture SEQUENCE {} } } UECapabilityInformation-IEs ::= SEQUENCE { ue-CapabilityRAT-ContainerList UE-CapabilityRAT-ContainerList OPTIONAL, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE{} OPTIONAL } -- TAG-UECAPABILITYINFORMATION-STOP -- ASN1STOP
The ULInformationTransfer message is used for the uplink transfer of NAS or non-3GPP dedicated information.
-- ASN1START -- TAG-ULINFORMATIONTRANSFER-START ULInformationTransfer ::= SEQUENCE { criticalExtensions CHOICE { ulInformationTransfer ULInformationTransfer-IEs, criticalExtensionsFuture SEQUENCE {} } } ULInformationTransfer-IEs ::= SEQUENCE { dedicatedNAS-Message DedicatedNAS-Message OPTIONAL, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-ULINFORMATIONTRANSFER-STOP -- ASN1STOP
The ULInformationTransferMRDC message is used for the uplink transfer of MR-DC dedicated information (e.g. for transferring the NR or E-UTRA RRC MeasurementReport message or the FailureInformation message).
-- ASN1START -- TAG-ULINFORMATIONTRANSFERMRDC-START ULInformationTransferMRDC ::= SEQUENCE { criticalExtensions CHOICE { c1 CHOICE { ulInformationTransferMRDC ULInformationTransferMRDC-IEs, spare3 NULL,spare2 NULL,spare1 NULL }, criticalExtensionsFuture SEQUENCE {} } } ULInformationTransferMRDC-IEs::= SEQUENCE {ul-DCCH-MessageNRIncludes the UL-DCCH-Message. In this version of the specification, the field is only used to transfer the NR RRC MeasurementReport and FailureInformation messages.OCTET STRING OPTIONAL,ul-DCCH-MessageEUTRAIncludes the UL-DCCH-Message. In this version of the specification, the field is only used to transfer the E-UTRA RRC MeasurementReport message.OCTET STRING OPTIONAL, lateNonCriticalExtension OCTET STRING OPTIONAL, nonCriticalExtension SEQUENCE {} OPTIONAL } -- TAG-ULINFORMATIONTRANSFERMRDC-STOP -- ASN1STOP
ULInformationTransferMRDC field descriptions |
---|
ul-DCCH-MessageNR Includes the UL-DCCH-Message. In this version of the specification, the field is only used to transfer the NR RRC MeasurementReport and FailureInformation messages. |
ul-DCCH-MessageEUTRA Includes the UL-DCCH-Message. In this version of the specification, the field is only used to transfer the E-UTRA RRC MeasurementReport message. |
SetupRelease allows the ElementTypeParam to be used as the referenced data type for the setup and release entries. See A.3.8 for guidelines.
-- ASN1START -- TAG-SETUPRELEASE-START SetupRelease { ElementTypeParam } ::= CHOICE { release NULL, setup ElementTypeParam } -- TAG-SETUPRELEASE-STOP -- ASN1STOP
SIB2 contains cell re-selection information common for intra-frequency, inter-frequency and/or inter-RAT cell re-selection (i.e. applicable for more than one type of cell re-selection but not necessarily all) as well as intra-frequency cell re-selection information other than neighbouring cell related.
-- ASN1START -- TAG-SIB2-START SIB2 ::= SEQUENCE { cellReselectionInfoCommon SEQUENCE { nrofSS-BlocksToAverage INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL, -- Need S absThreshSS-BlocksConsolidation ThresholdNR OPTIONAL, -- Need S rangeToBestCell RangeToBestCell OPTIONAL, -- Need R q-Hyst ENUMERATED { dB0, dB1, dB2, dB3, dB4, dB5, dB6, dB8, dB10, dB12, dB14, dB16, dB18, dB20, dB22, dB24}, speedStateReselectionPars SEQUENCE { mobilityStateParameters MobilityStateParameters, q-HystSF SEQUENCE { sf-Medium ENUMERATED {dB-6, dB-4, dB-2, dB0}, sf-High ENUMERATED {dB-6, dB-4, dB-2, dB0} } } OPTIONAL, -- Need R ... }, cellReselectionServingFreqInfo SEQUENCE { s-NonIntraSearchP ReselectionThreshold OPTIONAL, -- Need S s-NonIntraSearchQ ReselectionThresholdQ OPTIONAL, -- Need S threshServingLowP ReselectionThreshold, threshServingLowQ ReselectionThresholdQ OPTIONAL, -- Need R cellReselectionPriority CellReselectionPriority, cellReselectionSubPriority CellReselectionSubPriority OPTIONAL, -- Need R ... }, intraFreqCellReselectionInfo SEQUENCE { q-RxLevMin Q-RxLevMin, q-RxLevMinSUL Q-RxLevMin OPTIONAL, -- Need R q-QualMin Q-QualMin OPTIONAL, -- Need S s-IntraSearchP ReselectionThreshold, s-IntraSearchQ ReselectionThresholdQ OPTIONAL, -- Need S t-ReselectionNR T-Reselection, frequencyBandList MultiFrequencyBandListNR-SIB OPTIONAL, -- Need S frequencyBandListSUL MultiFrequencyBandListNR-SIB OPTIONAL, -- Need R p-Max P-Max OPTIONAL, -- Need S smtc SSB-MTC OPTIONAL, -- Need S ss-RSSI-Measurement SS-RSSI-Measurement OPTIONAL, -- Need R ssb-ToMeasure SSB-ToMeasure OPTIONAL, -- Need S deriveSSB-IndexFromCell BOOLEAN, ..., [[ t-ReselectionNR-SF SpeedStateScaleFactors OPTIONAL -- Need N ]] }, ... } RangeToBestCell ::= Q-OffsetRange -- TAG-SIB2-STOP -- ASN1STOP
SIB3 contains neighbouring cell related information relevant only for intra-frequency cell re-selection. The IE includes cells with specific re-selection parameters as well as blacklisted cells.
-- ASN1START -- TAG-SIB3-START SIB3 ::= SEQUENCE {intraFreqNeighCellListList of intra-frequency neighbouring cells with specific cell re-selection parameters.IntraFreqNeighCellList OPTIONAL, -- Need RintraFreqBlackCellListList of blacklisted intra-frequency neighbouring cells.IntraFreqBlackCellList OPTIONAL, -- Need R lateNonCriticalExtension OCTET STRING OPTIONAL, ... } IntraFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellIntra)) OF IntraFreqNeighCellInfo IntraFreqNeighCellInfo ::= SEQUENCE { physCellId PhysCellId,q-OffsetCellParameter "Qoffsets,n" in TS 38.304 [20].Q-OffsetRange,q-RxLevMinOffsetCellParameter "Qrxlevminoffsetcell" in TS 38.304 [20]. Actual value Qrxlevminoffsetcell = field value * 2 [dB].INTEGER (1..8) OPTIONAL, -- Need Rq-RxLevMinOffsetCellSULParameter "QrxlevminoffsetcellSUL" in TS 38.304 [20]. Actual value QrxlevminoffsetcellSUL = field value * 2 [dB].INTEGER (1..8) OPTIONAL, -- Need Rq-QualMinOffsetCellParameter "Qqualminoffsetcell" in TS 38.304 [20]. Actual value Qqualminoffsetcell = field value [dB].INTEGER (1..8) OPTIONAL, -- Need R ... } IntraFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PCI-Range -- TAG-SIB3-STOP -- ASN1STOP
SIB2 field descriptions |
---|
absThreshSS-BlocksConsolidation Threshold for consolidation of L1 measurements per RS index. If the field is absent, the UE uses the measurement quantity as specified in TS 38.304 [20]. |
cellReselectionInfoCommon Cell re-selection information common for intra-frequency, inter-frequency and/ or inter-RAT cell re-selection. |
cellReselectionServingFreqInfo Information common for non-intra-frequency cell re-selection i.e. cell re-selection to inter-frequency and inter-RAT cells. |
deriveSSB-IndexFromCell This field indicates whether the UE can utilize serving cell timing to derive the index of SS block transmitted by neighbour cell. If this field is set to true, the UE assumes SFN and frame boundary alignment across cells on the serving frequency as specified in TS 38.133 [14]. |
frequencyBandList Indicates the list of frequency bands for which the NR cell reselection parameters apply. The UE behaviour in case the field is absent is described in clause 5.2.2.4.3. |
intraFreqCellReselectionInfo Cell re-selection information common for intra-frequency cells. |
nrofSS-BlocksToAverage Number of SS blocks to average for cell measurement derivation. If the field is absent the UE uses the measurement quantity as specified in TS 38.304 [20]. |
p-Max Value in dBm applicable for the intra-frequency neighbouring NR cells. If absent the UE applies the maximum power according to TS 38.101-1 [15] in case of an FR1 cell or TS 38.101-2 [39] in case of an FR2 cell. In this release of the specification, if p-Max is present on a carrier frequency in FR2, the UE shall ignore the field and applies the maximum power according to TS 38.101-2 [39]. |
q-Hyst Parameter "Qhyst" in TS 38.304 [20], Value in dB. Value dB1 corresponds to 1 dB, dB2 corresponds to 2 dB and so on. |
q-HystSF Parameter "Speed dependent ScalingFactor for Qhyst" in TS 38.304 [20]. The sf-Medium and sf-High concern the additional hysteresis to be applied, in Medium and High Mobility state respectively, to Qhyst as defined in TS 38.304 [20]. In dB. Value dB-6 corresponds to -6dB, dB-4 corresponds to -4dB and so on. |
q-QualMin Parameter "Qqualmin" in TS 38.304 [20], applicable for intra-frequency neighbour cells. If the field is absent, the UE applies the (default) value of negative infinity for Qqualmin. |
q-RxLevMin Parameter "Qrxlevmin" in TS 38.304 [20], applicable for intra-frequency neighbour cells. |
q-RxLevMinSUL Parameter "Qrxlevmin" in TS 38.304 [20], applicable for intra-frequency neighbour cells. |
rangeToBestCell Parameter "rangeToBestCell" in TS 38.304 [20]. The network configures only non-negative (in dB) values. |
s-IntraSearchP Parameter "SIntraSearchP" in TS 38.304 [20]. |
s-IntraSearchQ Parameter "SIntraSearchQ" in TS 38.304 [20]. If the field is absent, the UE applies the (default) value of 0 dB for SIntraSearchQ. |
s-NonIntraSearchP Parameter "SnonIntraSearchP" in TS 38.304 [20]. If this field is absent, the UE applies the (default) value of infinity for SnonIntraSearchP. |
s-NonIntraSearchQ Parameter "SnonIntraSearchQ" in TS 38.304 [20]. If the field is absent, the UE applies the (default) value of 0 dB for SnonIntraSearchQ. |
smtc Measurement timing configuration for intra-frequency measurement. If this field is absent, the UE assumes that SSB periodicity is 5 ms for the intra-frequnecy cells. |
ssb-ToMeasure The set of SS blocks to be measured within the SMTC measurement duration (see TS 38.215 [9]). When the field is absent the UE measures on all SS-blocks. |
t-ReselectionNR Parameter "TreselectionNR" in TS 38.304 [20]. |
t-ReselectionNR-SF Parameter "Speed dependent ScalingFactor for TreselectionNR" in TS 38.304 [20]. If the field is absent, the UE behaviour is specified in TS 38.304 [20]. |
threshServingLowP Parameter "ThreshServing, LowP" inTS 38.304 [20]. |
threshServingLowQ Parameter "ThreshServing, LowQ" inTS 38.304 [20]. |
SIB3field descriptions |
---|
intraFreqBlackCellList List of blacklisted intra-frequency neighbouring cells. |
intraFreqNeighCellList List of intra-frequency neighbouring cells with specific cell re-selection parameters. |
q-OffsetCell Parameter "Qoffsets,n" in TS 38.304 [20]. |
q-QualMinOffsetCell Parameter "Qqualminoffsetcell" in TS 38.304 [20]. Actual value Qqualminoffsetcell = field value [dB]. |
q-RxLevMinOffsetCell Parameter "Qrxlevminoffsetcell" in TS 38.304 [20]. Actual value Qrxlevminoffsetcell = field value * 2 [dB]. |
q-RxLevMinOffsetCellSUL Parameter "QrxlevminoffsetcellSUL" in TS 38.304 [20]. Actual value QrxlevminoffsetcellSUL = field value * 2 [dB]. |
SIB4 contains information relevant only for inter-frequency cell re-selection i.e. information about other NR frequencies and inter-frequency neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency as well as cell specific re-selection parameters.
-- ASN1START -- TAG-SIB4-START SIB4 ::= SEQUENCE {interFreqCarrierFreqListList of neighbouring carrier frequencies and frequency specific cell re-selection information.InterFreqCarrierFreqList, lateNonCriticalExtension OCTET STRING OPTIONAL, ... } InterFreqCarrierFreqList ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfo InterFreqCarrierFreqInfo ::= SEQUENCE {dl-CarrierFreqThis field indicates center frequency of the SS blockof the neighbour cells, where the frequency corresponds to a GSCN value as specified in TS 38.101-1 [15].ARFCN-ValueNR,frequencyBandListIndicates the list of frequency bands for which the NR cell reselection parameters apply.MultiFrequencyBandListNR-SIB OPTIONAL, -- Cond Mandatory frequencyBandListSUL MultiFrequencyBandListNR-SIB OPTIONAL, -- Need RnrofSS-BlocksToAverageNumber of SS blocks to average for cell measurement derivation. If the field is absent, the UE uses the measurement quantity as specified in TS 38.304 [20].INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL, -- Need SabsThreshSS-BlocksConsolidationThreshold for consolidation of L1 measurements per RS index. If the field is absent, the UE uses the measurement quantity as specified in TS 38.304 [20].ThresholdNR OPTIONAL, -- Need SsmtcMeasurement timing configuration for inter-frequency measurement. If this field is absent, the UE assumes that SSB periodicity is 5 ms in this frequency.SSB-MTC OPTIONAL, -- Need SssbSubcarrierSpacingSubcarrier spacing of SSB. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable.SubcarrierSpacing,ssb-ToMeasureThe set of SS blocks to be measured within the SMTC measurement duration (see TS 38.215 [9]). When the field is absent the UE measures on all SS-blocks.SSB-ToMeasure OPTIONAL, -- Need SderiveSSB-IndexFromCellThis field indicates whether the UE may use the timing of any detected cell on that frequency to derive the SSB index of all neighbour cells on that frequency. If this field is set to true, the UE assumes SFN and frame boundary alignment across cells on the neighbor frequency as specified in TS 38.133 [14].BOOLEAN, ss-RSSI-Measurement SS-RSSI-Measurement OPTIONAL, -- Need Rq-RxLevMinParameter "Qrxlevmin" in TS 38.304 [20].Q-RxLevMin,q-RxLevMinSULParameter "Qrxlevmin" in TS 38.304 [20].Q-RxLevMin OPTIONAL, -- Need Rq-QualMinParameter "Qqualmin" in TS 38.304 [20]. If the field is absent, the UE applies the (default) value of negative infinity for Qqualmin.Q-QualMin OPTIONAL, -- Need Sp-MaxValue in dBm applicable for the neighbouring NR cells on this carrier frequency. If absent the UE applies the maximum power according to TS 38.101-1 [15] in case of an FR1 cell or TS 38.101-2 [39] in case of an FR2 cell. In this release of the specification, if p-Max is present on a carrier frequency in FR2, the UE shall ignore the field and applies the maximum power according to TS 38.101-2 [39].P-Max OPTIONAL, -- Need St-ReselectionNRParameter "TreselectionNR" in TS 38.304 [20].T-Reselection,t-ReselectionNR-SFParameter "Speed dependent ScalingFactor for TreselectionNR" in TS 38.304 [20]. If the field is absent, the UE behaviour is specified in TS 38.304 [20].SpeedStateScaleFactors OPTIONAL, -- Need SthreshX-HighPParameter "ThreshX, HighP" in TS 38.304 [20].ReselectionThreshold,threshX-LowPParameter "ThreshX, LowP" in TS 38.304 [20].ReselectionThreshold, threshX-Q SEQUENCE {threshX-HighQParameter "ThreshX, HighQ" in TS 38.304 [20].ReselectionThresholdQ,threshX-LowQParameter "ThreshX, LowQ" in TS 38.304 [20].ReselectionThresholdQ } OPTIONAL, -- Cond RSRQ cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need R cellReselectionSubPriority CellReselectionSubPriority OPTIONAL, -- Need Rq-OffsetFreqParameter "Qoffsetfrequency" in TS 38.304 [20].Q-OffsetRange DEFAULT dB0,interFreqNeighCellListList of inter-frequency neighbouring cells with specific cell re-selection parameters.InterFreqNeighCellList OPTIONAL, -- Need RinterFreqBlackCellListList of blacklisted inter-frequency neighbouring cells.InterFreqBlackCellList OPTIONAL, -- Need R ... } InterFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellInter)) OF InterFreqNeighCellInfo InterFreqNeighCellInfo ::= SEQUENCE { physCellId PhysCellId,q-OffsetCellParameter "Qoffsets,n" in TS 38.304 [20].Q-OffsetRange,q-RxLevMinOffsetCellParameter "Qrxlevminoffsetcell" in TS 38.304 [20]. Actual value Qrxlevminoffsetcell = field value * 2 [dB].INTEGER (1..8) OPTIONAL, -- Need Rq-RxLevMinOffsetCellSULParameter "QrxlevminoffsetcellSUL" in TS 38.304 [20]. Actual value QrxlevminoffsetcellSUL = field value * 2 [dB].INTEGER (1..8) OPTIONAL, -- Need Rq-QualMinOffsetCellParameter "Qqualminoffsetcell" in TS 38.304 [20]. Actual value Qqualminoffsetcell = field value [dB].INTEGER (1..8) OPTIONAL, -- Need R ... } InterFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PCI-Range -- TAG-SIB4-STOP -- ASN1STOP
SIB4 field descriptions |
---|
absThreshSS-BlocksConsolidation Threshold for consolidation of L1 measurements per RS index. If the field is absent, the UE uses the measurement quantity as specified in TS 38.304 [20]. |
deriveSSB-IndexFromCell This field indicates whether the UE may use the timing of any detected cell on that frequency to derive the SSB index of all neighbour cells on that frequency. If this field is set to true, the UE assumes SFN and frame boundary alignment across cells on the neighbor frequency as specified in TS 38.133 [14]. |
dl-CarrierFreq This field indicates center frequency of the SS blockof the neighbour cells, where the frequency corresponds to a GSCN value as specified in TS 38.101-1 [15]. |
frequencyBandList Indicates the list of frequency bands for which the NR cell reselection parameters apply. |
interFreqBlackCellList List of blacklisted inter-frequency neighbouring cells. |
interFreqCarrierFreqList List of neighbouring carrier frequencies and frequency specific cell re-selection information. |
interFreqNeighCellList List of inter-frequency neighbouring cells with specific cell re-selection parameters. |
nrofSS-BlocksToAverage Number of SS blocks to average for cell measurement derivation. If the field is absent, the UE uses the measurement quantity as specified in TS 38.304 [20]. |
p-Max Value in dBm applicable for the neighbouring NR cells on this carrier frequency. If absent the UE applies the maximum power according to TS 38.101-1 [15] in case of an FR1 cell or TS 38.101-2 [39] in case of an FR2 cell. In this release of the specification, if p-Max is present on a carrier frequency in FR2, the UE shall ignore the field and applies the maximum power according to TS 38.101-2 [39]. |
q-OffsetCell Parameter "Qoffsets,n" in TS 38.304 [20]. |
q-OffsetFreq Parameter "Qoffsetfrequency" in TS 38.304 [20]. |
q-QualMin Parameter "Qqualmin" in TS 38.304 [20]. If the field is absent, the UE applies the (default) value of negative infinity for Qqualmin. |
q-QualMinOffsetCell Parameter "Qqualminoffsetcell" in TS 38.304 [20]. Actual value Qqualminoffsetcell = field value [dB]. |
q-RxLevMin Parameter "Qrxlevmin" in TS 38.304 [20]. |
q-RxLevMinOffsetCell Parameter "Qrxlevminoffsetcell" in TS 38.304 [20]. Actual value Qrxlevminoffsetcell = field value * 2 [dB]. |
q-RxLevMinOffsetCellSUL Parameter "QrxlevminoffsetcellSUL" in TS 38.304 [20]. Actual value QrxlevminoffsetcellSUL = field value * 2 [dB]. |
q-RxLevMinSUL Parameter "Qrxlevmin" in TS 38.304 [20]. |
smtc Measurement timing configuration for inter-frequency measurement. If this field is absent, the UE assumes that SSB periodicity is 5 ms in this frequency. |
ssb-ToMeasure The set of SS blocks to be measured within the SMTC measurement duration (see TS 38.215 [9]). When the field is absent the UE measures on all SS-blocks. |
ssbSubcarrierSpacing Subcarrier spacing of SSB. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable. |
threshX-HighP Parameter "ThreshX, HighP" in TS 38.304 [20]. |
threshX-HighQ Parameter "ThreshX, HighQ" in TS 38.304 [20]. |
threshX-LowP Parameter "ThreshX, LowP" in TS 38.304 [20]. |
threshX-LowQ Parameter "ThreshX, LowQ" in TS 38.304 [20]. |
t-ReselectionNR Parameter "TreselectionNR" in TS 38.304 [20]. |
t-ReselectionNR-SF Parameter "Speed dependent ScalingFactor for TreselectionNR" in TS 38.304 [20]. If the field is absent, the UE behaviour is specified in TS 38.304 [20]. |
Conditional Presence | Explanation |
---|---|
Mandatory | The field is mandatory present in SIB4. |
RSRQ | The field is mandatory present if threshServingLowQ is present in SIB2; otherwise it is absent. |
SIB5 contains information relevant only for inter-RAT cell re-selection i.e. information about E-UTRA frequencies and E-UTRAs neighbouring cells relevant for cell re-selection. The IE includes cell re-selection parameters common for a frequency.
-- ASN1START -- TAG-SIB5-START SIB5 ::= SEQUENCE {carrierFreqListEUTRAList of carrier frequencies of E-UTRA.CarrierFreqListEUTRA OPTIONAL, -- Need Rt-ReselectionEUTRAParameter "TreselectionEUTRA" in TS 38.304 [20].T-Reselection,t-ReselectionEUTRA-SFParameter "Speed dependent ScalingFactor for TreselectionEUTRA" in TS 38.304 [20]. If the field is absent, the UE behaviour is specified in TS 38.304 [20].SpeedStateScaleFactors OPTIONAL, -- Need S lateNonCriticalExtension OCTET STRING OPTIONAL, ... } CarrierFreqListEUTRA ::= SEQUENCE (SIZE (1..maxEUTRA-Carrier)) OF CarrierFreqEUTRA CarrierFreqEUTRA ::= SEQUENCE { carrierFreq ARFCN-ValueEUTRA,eutra-multiBandInfoListIndicates the list of frequency bands in addition to the band represented by carrierFreq for which cell reselection parameters are common, and a list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [22], table 6.2.4-1, for the frequency bands in eutra-multiBandInfoListEUTRA-MultiBandInfoList OPTIONAL, -- Need R eutra-FreqNeighCellList EUTRA-FreqNeighCellList OPTIONAL, -- Need Reutra-BlackCellListList of blacklisted E-UTRA neighbouring cells.EUTRA-FreqBlackCellList OPTIONAL, -- Need R allowedMeasBandwidth EUTRA-AllowedMeasBandwidth, presenceAntennaPort1 EUTRA-PresenceAntennaPort1, cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need R cellReselectionSubPriority CellReselectionSubPriority OPTIONAL, -- Need RthreshX-HighParameter "ThreshX, HighP" in TS 38.304 [20].ReselectionThreshold,threshX-LowParameter "ThreshX, LowP" in TS 38.304 [20].ReselectionThreshold,q-RxLevMinParameter "Qrxlevmin" in TS 36.304 [27]. Actual value Qrxlevmin = field value * 2 [dBm].INTEGER (-70..-22),q-QualMinParameter "Qqualmin" in TS 36.304 [27]. Actual value Qqualmin = field value [dB].INTEGER (-34..-3),p-MaxEUTRAThe maximum allowed transmission power in dBm on the (uplink) carrier frequency, see TS 36.304 [27].INTEGER (-30..33), threshX-Q SEQUENCE {threshX-HighQParameter "ThreshX, HighQ" in TS 38.304 [20].ReselectionThresholdQ,threshX-LowQParameter "ThreshX, LowQ" in TS 38.304 [20].ReselectionThresholdQ } OPTIONAL -- Cond RSRQ } EUTRA-FreqBlackCellList ::= SEQUENCE (SIZE (1..maxEUTRA-CellBlack)) OF EUTRA-PhysCellIdRange EUTRA-FreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellEUTRA)) OF EUTRA-FreqNeighCellInfo EUTRA-FreqNeighCellInfo ::= SEQUENCE { physCellId EUTRA-PhysCellId,dummyThis field is not used in the specification. If received it shall be ignored by the UE.EUTRA-Q-OffsetRange,q-RxLevMinOffsetCellParameter "Qrxlevminoffsetcell" in TS 36.304 [27]. Actual value Qrxlevminoffsetcell = field value * 2 [dB].INTEGER (1..8) OPTIONAL, -- Need Rq-QualMinOffsetCellParameter "Qqualminoffsetcell" in TS 36.304 [27]. Actual value Qqualminoffsetcell = field value [dB].INTEGER (1..8) OPTIONAL -- Need R } -- TAG-SIB5-STOP -- ASN1STOP
SIB5 field descriptions |
---|
carrierFreqListEUTRA List of carrier frequencies of E-UTRA. |
dummy This field is not used in the specification. If received it shall be ignored by the UE. |
eutra-BlackCellList List of blacklisted E-UTRA neighbouring cells. |
eutra-multiBandInfoList Indicates the list of frequency bands in addition to the band represented by carrierFreq for which cell reselection parameters are common, and a list of additionalPmax and additionalSpectrumEmission values, as defined in TS 36.101 [22], table 6.2.4-1, for the frequency bands in eutra-multiBandInfoList |
p-MaxEUTRA The maximum allowed transmission power in dBm on the (uplink) carrier frequency, see TS 36.304 [27]. |
q-QualMin Parameter "Qqualmin" in TS 36.304 [27]. Actual value Qqualmin = field value [dB]. |
q-QualMinOffsetCell Parameter "Qqualminoffsetcell" in TS 36.304 [27]. Actual value Qqualminoffsetcell = field value [dB]. |
q-RxLevMin Parameter "Qrxlevmin" in TS 36.304 [27]. Actual value Qrxlevmin = field value * 2 [dBm]. |
q-RxLevMinOffsetCell Parameter "Qrxlevminoffsetcell" in TS 36.304 [27]. Actual value Qrxlevminoffsetcell = field value * 2 [dB]. |
t-ReselectionEUTRA Parameter "TreselectionEUTRA" in TS 38.304 [20]. |
threshX-High Parameter "ThreshX, HighP" in TS 38.304 [20]. |
threshX-HighQ Parameter "ThreshX, HighQ" in TS 38.304 [20]. |
threshX-Low Parameter "ThreshX, LowP" in TS 38.304 [20]. |
threshX-LowQ Parameter "ThreshX, LowQ" in TS 38.304 [20]. |
t-ReselectionEUTRA-SF Parameter "Speed dependent ScalingFactor for TreselectionEUTRA" in TS 38.304 [20]. If the field is absent, the UE behaviour is specified in TS 38.304 [20]. |
Conditional Presence | Explanation |
---|---|
RSRQ | The field is mandatory present if the threshServingLowQ is present in SIB2; otherwise it is absent. |
SIB6 contains an ETWS primary notification.
-- ASN1START -- TAG-SIB6-START SIB6 ::= SEQUENCE {messageIdentifierIdentifies the source and type of ETWS notification.BIT STRING (SIZE (16)),serialNumberIdentifies variations of an ETWS notification.BIT STRING (SIZE (16)),warningTypeIdentifies the warning type of the ETWS primary notification and provides information on emergency user alert and UE popup.OCTET STRING (SIZE (2)), lateNonCriticalExtension OCTET STRING OPTIONAL, ... } -- TAG-SIB6-STOP -- ASN1STOP
SIB6 field descriptions |
---|
messageIdentifier Identifies the source and type of ETWS notification. |
serialNumber Identifies variations of an ETWS notification. |
warningType Identifies the warning type of the ETWS primary notification and provides information on emergency user alert and UE popup. |
SIB7 contains an ETWS secondary notification.
-- ASN1START -- TAG-SIB7-START SIB7 ::= SEQUENCE {messageIdentifierIdentifies the source and type of ETWS notification.BIT STRING (SIZE (16)),serialNumberIdentifies variations of an ETWS notification.BIT STRING (SIZE (16)),warningMessageSegmentTypeIndicates whether the included ETWS warning message segment is the last segment or not.ENUMERATED {notLastSegment, lastSegment},warningMessageSegmentNumberSegment number of the ETWS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, A segment number of one corresponds to the second segment, and so on.INTEGER (0..63),warningMessageSegmentCarries a segment of the Warning Message Contents IE.OCTET STRING,dataCodingSchemeIdentifies the alphabet/coding and the language applied variations of an ETWS notification.OCTET STRING (SIZE (1)) OPTIONAL, -- Cond Segment1 lateNonCriticalExtension OCTET STRING OPTIONAL, ... } -- TAG-SIB7-STOP -- ASN1STOP
SIB7 field descriptions |
---|
dataCodingScheme Identifies the alphabet/coding and the language applied variations of an ETWS notification. |
messageIdentifier Identifies the source and type of ETWS notification. |
serialNumber Identifies variations of an ETWS notification. |
warningMessageSegment Carries a segment of the Warning Message Contents IE. |
warningMessageSegmentNumber Segment number of the ETWS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, A segment number of one corresponds to the second segment, and so on. |
warningMessageSegmentType Indicates whether the included ETWS warning message segment is the last segment or not. |
Conditional Presence | Explanation |
---|---|
Segment1 | The field is mandatory present in the first segment of SIB7, otherwise it is absent. |
SIB8 contains a CMAS notification.
-- ASN1START -- TAG-SIB8-START SIB8 ::= SEQUENCE {messageIdentifierIdentifies the source and type of CMAS notification.BIT STRING (SIZE (16)),serialNumberIdentifies variations of a CMAS notification.BIT STRING (SIZE (16)),warningMessageSegmentTypeIndicates whether the included CMAS warning message segment is the last segment or not. If warning area coordinates are provided for the warning message, then this field applies to both warning message segment and warning area coordinates segment.ENUMERATED {notLastSegment, lastSegment},warningMessageSegmentNumberSegment number of the CMAS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, one corresponds to the second segment, and so on. If warning area coordinates are provided for the warning message, then this field applies to both warning message segment and warning area coordinates segment.INTEGER (0..63),warningMessageSegmentCarries a segment, with one or more octets, of the Warning Message Contents IE defined in TS 38.413 [42]. The first octet of the Warning Message Contents IE is equivalent to the first octet of the CB data IE defined in and encoded according to TS 23.041 [29], clause 9.4.2.2.5, and so on.OCTET STRING,dataCodingSchemeIdentifies the alphabet/coding and the language applied variations of a CMAS notification.OCTET STRING (SIZE (1)) OPTIONAL, -- Cond Segment1warningAreaCoordinatesSegmentIf present, carries a segment, with one or more octets, of the geographical area where the CMAS warning message is valid as defined in [28]. The first octet of the first warningAreaCoordinatesSegment is equivalent to the first octet of Warning Area Coordinates IE defined in and encoded according to TS 23.041 [29] and so on.OCTET STRING OPTIONAL, -- Need R lateNonCriticalExtension OCTET STRING OPTIONAL, ... } -- TAG-SIB8-STOP -- ASN1STOP
SIB8 field descriptions |
---|
dataCodingScheme Identifies the alphabet/coding and the language applied variations of a CMAS notification. |
messageIdentifier Identifies the source and type of CMAS notification. |
serialNumber Identifies variations of a CMAS notification. |
warningAreaCoordinatesSegment If present, carries a segment, with one or more octets, of the geographical area where the CMAS warning message is valid as defined in [28]. The first octet of the first warningAreaCoordinatesSegment is equivalent to the first octet of Warning Area Coordinates IE defined in and encoded according to TS 23.041 [29] and so on. |
warningMessageSegment Carries a segment, with one or more octets, of the Warning Message Contents IE defined in TS 38.413 [42]. The first octet of the Warning Message Contents IE is equivalent to the first octet of the CB data IE defined in and encoded according to TS 23.041 [29], clause 9.4.2.2.5, and so on. |
warningMessageSegmentNumber Segment number of the CMAS warning message segment contained in the SIB. A segment number of zero corresponds to the first segment, one corresponds to the second segment, and so on. If warning area coordinates are provided for the warning message, then this field applies to both warning message segment and warning area coordinates segment. |
warningMessageSegmentType Indicates whether the included CMAS warning message segment is the last segment or not. If warning area coordinates are provided for the warning message, then this field applies to both warning message segment and warning area coordinates segment. |
Conditional Presence | Explanation |
---|---|
Segment1 | The field is mandatory present in the first segment of SIB8, otherwise it is absent. |
SIB9 contains information related to GPS time and Coordinated Universal Time (UTC). The UE may use the parameters provided in this system information block to obtain the UTC,the GPS and the local time.
-- ASN1START -- TAG-SIB9-START SIB9 ::= SEQUENCE { timeInfo SEQUENCE {timeInfoUTCCoordinated Universal Time corresponding to the SFN boundary at or immediately after the ending boundary of the SI-window in which SIB9 is transmitted. The field counts the number of UTC seconds in 10 ms units since 00:00:00 on Gregorian calendar date 1 January, 1900 (midnight between Sunday, December 31, 1899 and Monday, January 1, 1900). See NOTE 1. This field is excluded when determining changes in system information, i.e. changes of timeInfoUTC should neither result in system information change notifications nor in a modification of valueTag in SIB1.INTEGER (0..549755813887),dayLightSavingTimeIndicates if and how daylight-saving time (DST) is applied to obtain the local time.The semantics are the same as the semantics of the Daylight Saving Time IE in TS 24.501 [23] and TS 24.008 [38].The first/leftmost bit of the bit string contains the b2 of octet 3 and the second bit of the bit string contains b1 of octet 3 in the value part of theDaylight Saving Time IE in TS 24.008 [38].BIT STRING (SIZE (2)) OPTIONAL, -- Need RleapSecondsNumber of leap seconds offset between GPS Time and UTC. UTC and GPS time are related i.e. GPS time -leapSeconds = UTC time.INTEGER (-127..128) OPTIONAL, -- Need RlocalTimeOffsetOffset between UTC and local time in units of 15 minutes. Actual value = field value * 15 minutes. Local time of the day is calculated as UTC time + localTimeOffset.INTEGER (-63..64) OPTIONAL -- Need R } OPTIONAL, -- Need R lateNonCriticalExtension OCTET STRING OPTIONAL, ... } -- TAG-SIB9-STOP -- ASN1STOP
SIB9 field descriptions |
---|
dayLightSavingTime Indicates if and how daylight-saving time (DST) is applied to obtain the local time.The semantics are the same as the semantics of the Daylight Saving Time IE in TS 24.501 [23] and TS 24.008 [38].The first/leftmost bit of the bit string contains the b2 of octet 3 and the second bit of the bit string contains b1 of octet 3 in the value part of theDaylight Saving Time IE in TS 24.008 [38]. |
leapSeconds Number of leap seconds offset between GPS Time and UTC. UTC and GPS time are related i.e. GPS time -leapSeconds = UTC time. |
localTimeOffset Offset between UTC and local time in units of 15 minutes. Actual value = field value * 15 minutes. Local time of the day is calculated as UTC time + localTimeOffset. |
timeInfoUTC Coordinated Universal Time corresponding to the SFN boundary at or immediately after the ending boundary of the SI-window in which SIB9 is transmitted. The field counts the number of UTC seconds in 10 ms units since 00:00:00 on Gregorian calendar date 1 January, 1900 (midnight between Sunday, December 31, 1899 and Monday, January 1, 1900). See NOTE 1. This field is excluded when determining changes in system information, i.e. changes of timeInfoUTC should neither result in system information change notifications nor in a modification of valueTag in SIB1. |
The IE AdditionalSpectrumEmission is used to indicate emission requirements to be fulfilled by the UE (see TS 38.101-1 [15], clause 6.2.3/6.2A.3, and TS 38.101-2 [39], clause 6.2.3/6.2A.3).
The IE Alpha defines possible values of a the pathloss compensation coefficient for uplink power control. Value alpha0 corresponds to the value 0, Value alpha04 corresponds to the value 0.4, Value alpha05 corresponds to the value 0.5 and so on. Value alpha1 corresponds to value 1. See also clause 7.1 of TS 38.213 [13].
The IE AMF-Identifier (AMFI) comprises of an AMF Region ID,an AMF Set ID and an AMF Pointer as specified in TS 23.003 [21], clause 2.10.1.
The IE ARFCN-ValueEUTRA is used to indicate the ARFCN applicable for a downlink, uplink or bi-directional (TDD) E-UTRA carrier frequency, as defined in TS 36.101 [22].
The IE ARFCN-ValueNR is used to indicate the ARFCN applicable for a downlink, uplink or bi-directional (TDD) NR global frequency raster, as defined in TS 38.101-1 [15] and TS 38.101-2 [39], clause 5.4.2.
The IE BeamFailureRecoveryConfig is used to configure the UE with RACH resources and candidate beams for beam failure recovery in case of beam failure detection. See also TS 38.321 [3], clause 5.1.1.
-- ASN1START -- TAG-BEAMFAILURERECOVERYCONFIG-START BeamFailureRecoveryConfig ::= SEQUENCE {rootSequenceIndex-BFRPRACH root sequence index (see TS 38.211 [16], clause 6.3.3.1) for beam failure recovery.INTEGER (0..137) OPTIONAL, -- Need Mrach-ConfigBFRConfiguration of random access parameters for BFR.RACH-ConfigGeneric OPTIONAL, -- Need Mrsrp-ThresholdSSBL1-RSRP threshold used for determining whether a candidate beam may be used by the UE to attempt contention free random access to recover from beam failure (see TS 38.213 [13], clause 6).RSRP-Range OPTIONAL, -- Need McandidateBeamRSListA list of reference signals (CSI-RS and/or SSB) identifying the candidate beams for recovery and the associated RA parameters. The network configures these reference signals to be within the linked DL BWP (i.e., within the DL BWP with the same bwp-Id) of the UL BWP in which the BeamFailureRecoveryConfig is provided.SEQUENCE (SIZE(1..maxNrofCandidateBeams)) OF PRACH-ResourceDedicatedBFR OPTIONAL, -- Need Mssb-perRACH-OccasionNumber of SSBs per RACH occasion for CF-BFR, see TS 38.213 [13], clause 8.1.ENUMERATED {oneEighth, oneFourth, oneHalf, one, two, four, eight, sixteen} OPTIONAL, -- Need Mra-ssb-OccasionMaskIndexExplicitly signalled PRACH Mask Index for RA Resource selection in TS 38.321 [3]. The mask is valid for all SSB resources.INTEGER (0..15) OPTIONAL, -- Need MrecoverySearchSpaceIdSearch space to use for BFR RAR. The network configures this search space to be within the linked DL BWP (i.e., within the DL BWP with the same bwp-Id) of the UL BWP in which the BeamFailureRecoveryConfig is provided. The CORESET associated with the recovery search space cannot be associated with another search space. Network always configures the UE with a value forthis field when contention free random access resources for BFR are configured.SearchSpaceId OPTIONAL, -- Need R ra-Prioritization RA-Prioritization OPTIONAL, -- Need RbeamFailureRecoveryTimerTimer for beam failure recovery timer. Upon expiration of the timer the UE does not use CFRA for BFR. Value in ms. Valuems10 corresponds to 10ms, valuems20corresponds to 20ms, and so on.ENUMERATED {ms10, ms20, ms40, ms60, ms80, ms100, ms150, ms200} OPTIONAL, -- Need M ..., [[msg1-SubcarrierSpacingSubcarrier spacing for contention free beam failure recovery. Only the values 15 kHz or 30 kHz (FR1), and 60 kHz or 120 kHz (FR2) are applicable. See TS 38.211 [16], clause 5.3.2.SubcarrierSpacing OPTIONAL -- Need M ]] } PRACH-ResourceDedicatedBFR ::= CHOICE {ssbThe ID of an SSB transmitted by this serving cell. It determines a candidate beam for beam failure recovery (BFR).BFR-SSB-Resource,csi-RSThe ID of a NZP-CSI-RS-Resource configured in the CSI-MeasConfig of this serving cell. This reference signal determines a candidate beam for beam failure recovery (BFR).BFR-CSIRS-Resource } BFR-SSB-Resource ::= SEQUENCE {ssbThe ID of an SSB transmitted by this serving cell. It determines a candidate beam for beam failure recovery (BFR).SSB-Index,ra-PreambleIndexThe preamble index that the UE shall use when performing BFR upon selecting the candidate beams identified by this SSB.INTEGER (0..63), ... } BFR-CSIRS-Resource ::= SEQUENCE {csi-RSThe ID of a NZP-CSI-RS-Resource configured in the CSI-MeasConfig of this serving cell. This reference signal determines a candidate beam for beam failure recovery (BFR).NZP-CSI-RS-ResourceId,ra-OccasionListRA occasions that the UE shall use when performing BFR upon selecting the candidate beam identified by this CSI-RS.The network ensures that the RA occasion indexes provided herein are also configured by prach-ConfigurationIndex and msg1-FDM. Each RACH occasion is sequentially numbered, first, in increasing order of frequency resource indexes for frequency multiplexed PRACH occasions; second, in increasing order of time resource indexes for time multiplexed PRACH occasions within a PRACH slot and Third, in increasing order of indexes for PRACH slots. If the field is absent the UE uses the RA occasion associated with the SSB that is QCLed with this CSI-RS.SEQUENCE (SIZE(1..maxRA-OccasionsPerCSIRS)) OF INTEGER (0..maxRA-Occasions-1) OPTIONAL, -- Need Rra-PreambleIndexThe preamble index that the UE shall use when performing BFR upon selecting the candidate beams identified by this SSB.INTEGER (0..63) OPTIONAL, -- Need R ... } -- TAG-BEAMFAILURERECOVERYCONFIG-STOP -- ASN1STOP
BeamFailureRecoveryConfig field descriptions |
---|
beamFailureRecoveryTimer Timer for beam failure recovery timer. Upon expiration of the timer the UE does not use CFRA for BFR. Value in ms. Valuems10 corresponds to 10ms, valuems20corresponds to 20ms, and so on. |
candidateBeamRSList A list of reference signals (CSI-RS and/or SSB) identifying the candidate beams for recovery and the associated RA parameters. The network configures these reference signals to be within the linked DL BWP (i.e., within the DL BWP with the same bwp-Id) of the UL BWP in which the BeamFailureRecoveryConfig is provided. |
msg1-SubcarrierSpacing Subcarrier spacing for contention free beam failure recovery. Only the values 15 kHz or 30 kHz (FR1), and 60 kHz or 120 kHz (FR2) are applicable. See TS 38.211 [16], clause 5.3.2. |
rsrp-ThresholdSSB L1-RSRP threshold used for determining whether a candidate beam may be used by the UE to attempt contention free random access to recover from beam failure (see TS 38.213 [13], clause 6). |
ra-prioritization Parameters which apply for prioritized random access procedure for BFR (see TS 38.321 [3], clause 5.1.1). |
ra-ssb-OccasionMaskIndex Explicitly signalled PRACH Mask Index for RA Resource selection in TS 38.321 [3]. The mask is valid for all SSB resources. |
rach-ConfigBFR Configuration of random access parameters for BFR. |
recoverySearchSpaceId Search space to use for BFR RAR. The network configures this search space to be within the linked DL BWP (i.e., within the DL BWP with the same bwp-Id) of the UL BWP in which the BeamFailureRecoveryConfig is provided. The CORESET associated with the recovery search space cannot be associated with another search space. Network always configures the UE with a value forthis field when contention free random access resources for BFR are configured. |
rootSequenceIndex-BFR PRACH root sequence index (see TS 38.211 [16], clause 6.3.3.1) for beam failure recovery. |
ssb-perRACH-Occasion Number of SSBs per RACH occasion for CF-BFR, see TS 38.213 [13], clause 8.1. |
BFR-CSIRS-Resource field descriptions |
---|
csi-RS The ID of a NZP-CSI-RS-Resource configured in the CSI-MeasConfig of this serving cell. This reference signal determines a candidate beam for beam failure recovery (BFR). |
ra-OccasionList RA occasions that the UE shall use when performing BFR upon selecting the candidate beam identified by this CSI-RS.The network ensures that the RA occasion indexes provided herein are also configured by prach-ConfigurationIndex and msg1-FDM. Each RACH occasion is sequentially numbered, first, in increasing order of frequency resource indexes for frequency multiplexed PRACH occasions; second, in increasing order of time resource indexes for time multiplexed PRACH occasions within a PRACH slot and Third, in increasing order of indexes for PRACH slots. If the field is absent the UE uses the RA occasion associated with the SSB that is QCLed with this CSI-RS. |
ra-PreambleIndex The RA preamble index to use in the RA occasions associated with this CSI-RS. If the field is absent, the UE uses the preamble index associated with the SSB that is QCLed with this CSI-RS. |
BFR-SSB-Resource field descriptions |
---|
ra-PreambleIndex The preamble index that the UE shall use when performing BFR upon selecting the candidate beams identified by this SSB. |
ssb The ID of an SSB transmitted by this serving cell. It determines a candidate beam for beam failure recovery (BFR). |
The IE BetaOffsets is used to configure beta-offset values, see TS 38.213 [13], clause 9.3.
-- ASN1START -- TAG-BETAOFFSETS-START BetaOffsets ::= SEQUENCE {betaOffsetACK-Index1Up to 2 bits HARQ-ACK (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 11.INTEGER(0..31) OPTIONAL, -- Need SbetaOffsetACK-Index2Up to 11 bits HARQ-ACK (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 11.INTEGER(0..31) OPTIONAL, -- Need SbetaOffsetACK-Index3Above 11 bits HARQ-ACK (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 11.INTEGER(0..31) OPTIONAL, -- Need SbetaOffsetCSI-Part1-Index1Up to 11 bits of CSI part 1 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13.INTEGER(0..31) OPTIONAL, -- Need SbetaOffsetCSI-Part1-Index2Above 11 bits of CSI part 1 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13.INTEGER(0..31) OPTIONAL, -- Need SbetaOffsetCSI-Part2-Index1Up to 11 bits of CSI part 2 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13.INTEGER(0..31) OPTIONAL, -- Need SbetaOffsetCSI-Part2-Index2Above 11 bits of CSI part 2 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13.INTEGER(0..31) OPTIONAL -- Need S } -- TAG-BETAOFFSETS-STOP -- ASN1STOP
BetaOffsets field descriptions |
---|
betaOffsetACK-Index1 Up to 2 bits HARQ-ACK (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 11. |
betaOffsetACK-Index2 Up to 11 bits HARQ-ACK (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 11. |
betaOffsetACK-Index3 Above 11 bits HARQ-ACK (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 11. |
betaOffsetCSI-Part1-Index1 Up to 11 bits of CSI part 1 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13. |
betaOffsetCSI-Part1-Index2 Above 11 bits of CSI part 1 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13. |
betaOffsetCSI-Part2-Index1 Up to 11 bits of CSI part 2 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13. |
betaOffsetCSI-Part2-Index2 Above 11 bits of CSI part 2 bits (see TS 38.213 [13], clause 9.3). When the field is absent the UE applies the value 13. |
The IE BSR-Config is used to configure buffer status reporting.
-- ASN1START -- TAG-BSR-CONFIG-START BSR-Config ::= SEQUENCE {periodicBSR-TimerValue in number of subframes. Value sf1 corresponds to 1 subframe, valuesf5 corresponds to 5 subframes and so on.ENUMERATED { sf1, sf5, sf10, sf16, sf20, sf32, sf40, sf64, sf80, sf128, sf160, sf320, sf640, sf1280, sf2560, infinity },retxBSR-TimerValue in number of subframes. Value sf10 corresponds to 10 subframes, valuesf20 corresponds to 20 subframes and so on.ENUMERATED { sf10, sf20, sf40, sf80, sf160, sf320, sf640, sf1280, sf2560, sf5120, sf10240, spare5, spare4, spare3, spare2, spare1},logicalChannelSR-DelayTimerValue in number of subframes. Value sf20 corresponds to 20 subframes, sf40 corresponds to 40 subframes, and so on.ENUMERATED { sf20, sf40, sf64, sf128, sf512, sf1024, sf2560, spare1} OPTIONAL, -- Need R ... } -- TAG-BSR-CONFIG-STOP -- ASN1STOP
BSR-Config field descriptions |
---|
logicalChannelSR-DelayTimer Value in number of subframes. Value sf20 corresponds to 20 subframes, sf40 corresponds to 40 subframes, and so on. |
periodicBSR-Timer Value in number of subframes. Value sf1 corresponds to 1 subframe, valuesf5 corresponds to 5 subframes and so on. |
retxBSR-Timer Value in number of subframes. Value sf10 corresponds to 10 subframes, valuesf20 corresponds to 20 subframes and so on. |
The IE BWP is used to configure generic parameters of a bandwidth part as defined in TS 38.211 [16], clause 4.5, and TS 38.213 [13], clause 12. For each serving cell the network configures at least an initial downlink bandwidth part and one (if the serving cell is configured with an uplink) or two (if using supplementary uplink (SUL)) initial uplink bandwidth parts. Furthermore, the network may configure additional uplink and downlink bandwidth parts for a serving cell. The uplink and downlink bandwidth part configurations are divided into common and dedicated parameters.
-- ASN1START -- TAG-BWP-START BWP ::= SEQUENCE {locationAndBandwidthFrequency domain location and bandwidth of this bandwidth part. The value of the field shall be interpreted as resource indicator value (RIV) as defined TS 38.214 [19] with assumptions as described in TS 38.213 [13], clause 12, i.e. setting =275. The first PRB is a PRB determined by subcarrierSpacing of this BWP and offsetToCarrier (configured in SCS-SpecificCarrier contained within FrequencyInfoDL / FrequencyInfoUL / FrequencyInfoUL-SIB / FrequencyInfoDL-SIB within ServingCellConfigCommon / ServingCellConfigCommonSIB) corresponding to this subcarrier spacing. In case of TDD, a BWP-pair (UL BWP and DL BWP with the same bwp-Id) must have the same center frequency (see TS 38.213 [13], clause 12)INTEGER (0..37949),subcarrierSpacingSubcarrier spacing to be used in this BWP for all channels and reference signals unless explicitly configured elsewhere. Corresponds to subcarrier spacing according to TS 38.211 [16], table 4.2-1. The value kHz15 corresponds to µ=0, valuekHz30corresponds to µ=1, and so on. Only the values 15 kHz, 30 kHz, or 60 kHz (FR1), and 60 kHz or 120 kHz (FR2) are applicable. For the initial DL BWP this field has the same value as the field subCarrierSpacingCommon in MIB of the same serving cell. Except for SUL, the network ensures the same subcarrier spacing is used in active DL BWP and active UL BWP within a serving cell.SubcarrierSpacing,cyclicPrefixIndicates whether to use the extended cyclic prefix for this bandwidth part. If not set, the UE uses the normal cyclic prefix. Normal CP is supported for all subcarrier spacings and slot formats. Extended CP is supported only for 60 kHz subcarrier spacing. (see TS 38.211 [16], clause 4.2). Except for SUL, the network ensures the same cyclic prefix length is used in active DL BWP and active UL BWP within a serving cell.ENUMERATED { extended } OPTIONAL -- Need R } -- TAG-BWP-STOP -- ASN1STOP
BWP field descriptions |
---|
cyclicPrefix Indicates whether to use the extended cyclic prefix for this bandwidth part. If not set, the UE uses the normal cyclic prefix. Normal CP is supported for all subcarrier spacings and slot formats. Extended CP is supported only for 60 kHz subcarrier spacing. (see TS 38.211 [16], clause 4.2). Except for SUL, the network ensures the same cyclic prefix length is used in active DL BWP and active UL BWP within a serving cell. |
locationAndBandwidth Frequency domain location and bandwidth of this bandwidth part. The value of the field shall be interpreted as resource indicator value (RIV) as defined TS 38.214 [19] with assumptions as described in TS 38.213 [13], clause 12, i.e. setting =275. The first PRB is a PRB determined by subcarrierSpacing of this BWP and offsetToCarrier (configured in SCS-SpecificCarrier contained within FrequencyInfoDL / FrequencyInfoUL / FrequencyInfoUL-SIB / FrequencyInfoDL-SIB within ServingCellConfigCommon / ServingCellConfigCommonSIB) corresponding to this subcarrier spacing. In case of TDD, a BWP-pair (UL BWP and DL BWP with the same bwp-Id) must have the same center frequency (see TS 38.213 [13], clause 12) |
subcarrierSpacing Subcarrier spacing to be used in this BWP for all channels and reference signals unless explicitly configured elsewhere. Corresponds to subcarrier spacing according to TS 38.211 [16], table 4.2-1. The value kHz15 corresponds to µ=0, valuekHz30corresponds to µ=1, and so on. Only the values 15 kHz, 30 kHz, or 60 kHz (FR1), and 60 kHz or 120 kHz (FR2) are applicable. For the initial DL BWP this field has the same value as the field subCarrierSpacingCommon in MIB of the same serving cell. Except for SUL, the network ensures the same subcarrier spacing is used in active DL BWP and active UL BWP within a serving cell. |
The IE BWP-Downlink is used to configure an additional downlink bandwidth part (not for the initial BWP).
-- ASN1START -- TAG-BWP-DOWNLINK-START BWP-Downlink ::= SEQUENCE {bwp-IdAn identifier for this bandwidth part. Other parts of the RRC configuration use the BWP-Id to associate themselves with a particular bandwidth part. The network configures the BWPs with consecutive IDs from 1. The Network does not include the value 0, since value 0 is reserved for the initial BWP.BWP-Id, bwp-Common BWP-DownlinkCommon OPTIONAL, -- Cond SetupOtherBWP bwp-Dedicated BWP-DownlinkDedicated OPTIONAL, -- Cond SetupOtherBWP ... } -- TAG-BWP-DOWNLINK-STOP -- ASN1STOP
BWP-Downlink field descriptions |
---|
bwp-Id An identifier for this bandwidth part. Other parts of the RRC configuration use the BWP-Id to associate themselves with a particular bandwidth part. The network configures the BWPs with consecutive IDs from 1. The Network does not include the value 0, since value 0 is reserved for the initial BWP. |
Conditional Presence | Explanation |
---|---|
SetupOtherBWP | The field is mandatory present upon configuration of a new DL BWP. The field is optionally present, Need M, otherwise. |
The IE BWP-DownlinkCommon is used to configure the common parameters of a downlink BWP. They are "cell specific" and the network ensures the necessary alignment with corresponding parameters of other UEs. The common parameters of the initial bandwidth part of the PCell are also provided via system information. For all other serving cells, the network provides the common parameters via dedicated signalling.
-- ASN1START -- TAG-BWP-DOWNLINKCOMMON-START BWP-DownlinkCommon ::= SEQUENCE { genericParameters BWP,pdcch-ConfigCommonCell specific parameters for the PDCCH of this BWP.SetupRelease { PDCCH-ConfigCommon } OPTIONAL, -- Need Mpdsch-ConfigCommonCell specific parameters for the PDSCH of this BWP.SetupRelease { PDSCH-ConfigCommon } OPTIONAL, -- Need M ... } -- TAG-BWP-DOWNLINKCOMMON-STOP -- ASN1STOP
BWP-DownlinkCommon field descriptions |
---|
pdcch-ConfigCommon Cell specific parameters for the PDCCH of this BWP. |
pdsch-ConfigCommon Cell specific parameters for the PDSCH of this BWP. |
The IE BWP-DownlinkDedicated is used to configure the dedicated (UE specific) parameters of a downlink BWP.
-- ASN1START -- TAG-BWP-DOWNLINKDEDICATED-START BWP-DownlinkDedicated ::= SEQUENCE {pdcch-ConfigUE specific PDCCH configuration for one BWP.SetupRelease { PDCCH-Config } OPTIONAL, -- Need Mpdsch-ConfigUE specific PDSCH configuration for one BWP.SetupRelease { PDSCH-Config } OPTIONAL, -- Need Msps-ConfigUE specific SPS (Semi-Persistent Scheduling) configuration for one BWP. Except for reconfiguration with sync, the NW does not reconfigure sps-Config when there is an active configured downlink assignment (see TS 38.321 [3]). However, the NW may release the sps-Config at any time.SetupRelease { SPS-Config } OPTIONAL, -- Need MradioLinkMonitoringConfigUE specific configuration of radio link monitoring for detecting cell- and beam radio link failure occasions.The maximum number of failure detection resources should be limited up to 8 for both cell and beam radio link failure detection in Rel-15.SetupRelease { RadioLinkMonitoringConfig } OPTIONAL, -- Need M ... } -- TAG-BWP-DOWNLINKDEDICATED-STOP -- ASN1STOP
BWP-DownlinkDedicated field descriptions |
---|
pdcch-Config UE specific PDCCH configuration for one BWP. |
pdsch-Config UE specific PDSCH configuration for one BWP. |
sps-Config UE specific SPS (Semi-Persistent Scheduling) configuration for one BWP. Except for reconfiguration with sync, the NW does not reconfigure sps-Config when there is an active configured downlink assignment (see TS 38.321 [3]). However, the NW may release the sps-Config at any time. |
radioLinkMonitoringConfig UE specific configuration of radio link monitoring for detecting cell- and beam radio link failure occasions.The maximum number of failure detection resources should be limited up to 8 for both cell and beam radio link failure detection in Rel-15. |
The IE BWP-Id is used to refer to Bandwidth Parts (BWP). The initial BWP is referred to by BWP-Id 0. The other BWPs are referred to by BWP-Id 1 to maxNrofBWPs.
The IE BWP-Uplink is used to configure an additional uplink bandwidth part (not for the initial BWP).
-- ASN1START -- TAG-BWP-UPLINK-START BWP-Uplink ::= SEQUENCE {bwp-IdAn identifier for this bandwidth part. Other parts of the RRC configuration use the BWP-Id to associate themselves with a particular bandwidth part. The network configures the BWPs with consecutive IDs from 1.The Network does not include the value 0, since value 0 is reserved for the initial BWP.BWP-Id, bwp-Common BWP-UplinkCommon OPTIONAL, -- Cond SetupOtherBWP bwp-Dedicated BWP-UplinkDedicated OPTIONAL, -- Cond SetupOtherBWP ... } -- TAG-BWP-UPLINK-STOP -- ASN1STOP
BWP-Uplink field descriptions |
---|
bwp-Id An identifier for this bandwidth part. Other parts of the RRC configuration use the BWP-Id to associate themselves with a particular bandwidth part. The network configures the BWPs with consecutive IDs from 1.The Network does not include the value 0, since value 0 is reserved for the initial BWP. |
Conditional Presence | Explanation |
---|---|
SetupOtherBWP | The field is mandatory present upon configuration of a new UL BWP. The field is optionally present, Need M, otherwise. |
The IE BWP-UplinkCommon is used to configure the common parameters of an uplink BWP. They are "cell specific" and the network ensures the necessary alignment with corresponding parameters of other UEs. The common parameters of the initial bandwidth part of the PCell are also provided via system information. For all other serving cells, the network provides the common parameters via dedicated signalling.
-- ASN1START -- TAG-BWP-UPLINKCOMMON-START BWP-UplinkCommon ::= SEQUENCE { genericParameters BWP,rach-ConfigCommonConfiguration of cell specific random access parameters which the UE uses for contention based and contention free random access as well as for contention based beam failure recovery in this BWP. The NW configures SSB-based RA (and hence RACH-ConfigCommon) only for UL BWPs if the linked DL BWPs (same bwp-Id as UL-BWP) are the initial DL BWPs or DL BWPs containing the SSB associated to the initial DL BWP. The network configures rach-ConfigCommon, whenever it configures contention free random access (for reconfiguration with sync or for beam failure recovery).SetupRelease { RACH-ConfigCommon } OPTIONAL, -- Need Mpusch-ConfigCommonCell specific parameters for the PUSCH of this BWP.SetupRelease { PUSCH-ConfigCommon } OPTIONAL, -- Need Mpucch-ConfigCommonCell specific parameters for the PUCCH of this BWP.SetupRelease { PUCCH-ConfigCommon } OPTIONAL, -- Need M ... } -- TAG-BWP-UPLINKCOMMON-STOP -- ASN1STOP
BWP-UplinkCommon field descriptions |
---|
pucch-ConfigCommon Cell specific parameters for the PUCCH of this BWP. |
pusch-ConfigCommon Cell specific parameters for the PUSCH of this BWP. |
rach-ConfigCommon Configuration of cell specific random access parameters which the UE uses for contention based and contention free random access as well as for contention based beam failure recovery in this BWP. The NW configures SSB-based RA (and hence RACH-ConfigCommon) only for UL BWPs if the linked DL BWPs (same bwp-Id as UL-BWP) are the initial DL BWPs or DL BWPs containing the SSB associated to the initial DL BWP. The network configures rach-ConfigCommon, whenever it configures contention free random access (for reconfiguration with sync or for beam failure recovery). |
The IE BWP-UplinkDedicated is used to configure the dedicated (UE specific) parameters of an uplink BWP.
-- ASN1START -- TAG-BWP-UPLINKDEDICATED-START BWP-UplinkDedicated ::= SEQUENCE {pucch-ConfigPUCCH configuration for one BWP of the normal UL or SUL of a serving cell. If the UE is configured with SUL, the network configures PUCCH only on the BWPs of one of the uplinks (normal UL or SUL). The network configures PUCCH-Configat least on non-initial BWP(s) for SpCell and on all BWP(s) for PUCCH SCell. If supported by the UE, the network may configure at most one additional SCell of a cell group with PUCCH-Config (i.e. PUCCH SCell). In(NG)EN-DC and NE-DC, the NW configures at most one serving cell per frequency range with PUCCH. In (NG)EN-DC and NE-DC, if two PUCCH groups are configured, the serving cells of the NR PUCCH group in FR2 use the same numerology. For NR-DC, the maximum number of PUCCH groups in each cell group is one, and only the same numerology is supported for the cell group with carriers only in FR2. The NW may configure PUCCH for a BWP when setting up the BWP. The network may also add/remove the pucch-Config in an RRCReconfiguration with reconfigurationWithSync(for SpCell or PUCCH SCell) or with SCell release and add (for PUCCH SCell) to move the PUCCH between the UL and SUL carrier of one serving cell. In other cases, only modifications of a previously configured pucch-Config are allowed. If one (S)UL BWP of a serving cell is configured with PUCCH, all other (S)UL BWPs must be configured with PUCCH, too.SetupRelease { PUCCH-Config } OPTIONAL, -- Need Mpusch-ConfigPUSCH configuration for one BWP of the normal UL or SUL of a serving cell. If the UE is configured with SUL and if it has a PUSCH-Config for both UL and SUL, an UL/SUL indicator field in DCI indicates which of the two to use. See TS 38.212 [17], clause 7.3.1.SetupRelease { PUSCH-Config } OPTIONAL, -- Need MconfiguredGrantConfigA Configured-Grant of type1 or type2. It may be configured for UL or SUL but in case of type1 not for both at a time. Except for reconfiguration with sync, the NW does not reconfigure configuredGrantConfigwhen there is an active configured uplink grant Type 2 (see TS 38.321 [3]). However, the NW may release the configuredGrantConfigat any time.SetupRelease { ConfiguredGrantConfig } OPTIONAL, -- Need Msrs-ConfigUplink sounding reference signal configuration.SetupRelease { SRS-Config } OPTIONAL, -- Need MbeamFailureRecoveryConfigConfiguration of beam failure recovery. If supplementaryUplink is present, the field is present only in one of the uplink carriers, either UL or SUL.SetupRelease { BeamFailureRecoveryConfig } OPTIONAL, -- Cond SpCellOnly ... } -- TAG-BWP-UPLINKDEDICATED-STOP -- ASN1STOP
BWP-UplinkDedicated field descriptions |
---|
beamFailureRecoveryConfig Configuration of beam failure recovery. If supplementaryUplink is present, the field is present only in one of the uplink carriers, either UL or SUL. |
configuredGrantConfig A Configured-Grant of type1 or type2. It may be configured for UL or SUL but in case of type1 not for both at a time. Except for reconfiguration with sync, the NW does not reconfigure configuredGrantConfigwhen there is an active configured uplink grant Type 2 (see TS 38.321 [3]). However, the NW may release the configuredGrantConfigat any time. |
pucch-Config PUCCH configuration for one BWP of the normal UL or SUL of a serving cell. If the UE is configured with SUL, the network configures PUCCH only on the BWPs of one of the uplinks (normal UL or SUL). The network configures PUCCH-Configat least on non-initial BWP(s) for SpCell and on all BWP(s) for PUCCH SCell. If supported by the UE, the network may configure at most one additional SCell of a cell group with PUCCH-Config (i.e. PUCCH SCell). In(NG)EN-DC and NE-DC, the NW configures at most one serving cell per frequency range with PUCCH. In (NG)EN-DC and NE-DC, if two PUCCH groups are configured, the serving cells of the NR PUCCH group in FR2 use the same numerology. For NR-DC, the maximum number of PUCCH groups in each cell group is one, and only the same numerology is supported for the cell group with carriers only in FR2. The NW may configure PUCCH for a BWP when setting up the BWP. The network may also add/remove the pucch-Config in an RRCReconfiguration with reconfigurationWithSync(for SpCell or PUCCH SCell) or with SCell release and add (for PUCCH SCell) to move the PUCCH between the UL and SUL carrier of one serving cell. In other cases, only modifications of a previously configured pucch-Config are allowed. If one (S)UL BWP of a serving cell is configured with PUCCH, all other (S)UL BWPs must be configured with PUCCH, too. |
pusch-Config PUSCH configuration for one BWP of the normal UL or SUL of a serving cell. If the UE is configured with SUL and if it has a PUSCH-Config for both UL and SUL, an UL/SUL indicator field in DCI indicates which of the two to use. See TS 38.212 [17], clause 7.3.1. |
srs-Config Uplink sounding reference signal configuration. |
Conditional Presence | Explanation |
---|---|
SpCellOnly | The field is optionally present, Need M, in the BWP-UplinkDedicated of an SpCell. It is absent otherwise. |
The IE CellAccessRelatedInfo indicates cell access related information for this cell.
-- ASN1START -- TAG-CELLACCESSRELATEDINFO-START CellAccessRelatedInfo ::= SEQUENCE {plmn-IdentityInfoListTheplmn-IdentityInfoList is used to configure a set of PLMN-IdentityInfo elements. Each of those elements contains a list of one or more PLMN Identities and additional information associated with those PLMNs. The total number of PLMNs in the PLMN-IdentityInfoList does not exceed 12. A PLMN-identity can be included only once, and in only one entry of thePLMN-IdentityInfoList. The PLMN index is defined as b1+b2+…+b(n-1)+iforthePLMN included at the n-th entry of PLMN-IdentityInfoList and the i-th entry of its corresponding PLMN-IdentityInfo, where b(j) is the number of PLMN-Identity entries in each PLMN-IdentityInfo, respectively.PLMN-IdentityInfoList,cellReservedForOtherUseIndicates whether the cell is reserved, as defined in 38.304 [20]. The field is applicable to all PLMNs.ENUMERATED {true} OPTIONAL, -- Need R ... } -- TAG-CELLACCESSRELATEDINFO-STOP -- ASN1STOP
CellAccessRelatedInfo field descriptions |
---|
cellReservedForOtherUse Indicates whether the cell is reserved, as defined in 38.304 [20]. The field is applicable to all PLMNs. |
plmn-IdentityInfoList Theplmn-IdentityInfoList is used to configure a set of PLMN-IdentityInfo elements. Each of those elements contains a list of one or more PLMN Identities and additional information associated with those PLMNs. The total number of PLMNs in the PLMN-IdentityInfoList does not exceed 12. A PLMN-identity can be included only once, and in only one entry of thePLMN-IdentityInfoList. The PLMN index is defined as b1+b2+…+b(n-1)+iforthePLMN included at the n-th entry of PLMN-IdentityInfoList and the i-th entry of its corresponding PLMN-IdentityInfo, where b(j) is the number of PLMN-Identity entries in each PLMN-IdentityInfo, respectively. |
The IE CellAccessRelatedInfo-EUTRA-5GC indicates cell access related information for an LTE cell connected to 5GC.
-- ASN1START -- TAG-CELLACCESSRELATEDINFOEUTRA-5GC-START CellAccessRelatedInfo-EUTRA-5GC ::= SEQUENCE { plmn-IdentityList-eutra-5gc PLMN-IdentityList-EUTRA-5GC, trackingAreaCode-eutra-5gc TrackingAreaCode, ranac-5gc RAN-AreaCode OPTIONAL, cellIdentity-eutra-5gc CellIdentity-EUTRA-5GC } PLMN-IdentityList-EUTRA-5GC::= SEQUENCE (SIZE (1..maxPLMN)) OF PLMN-Identity-EUTRA-5GC PLMN-Identity-EUTRA-5GC ::= CHOICE { plmn-Identity-EUTRA-5GC PLMN-Identity, plmn-index INTEGER (1..maxPLMN) } CellIdentity-EUTRA-5GC ::= CHOICE { cellIdentity-EUTRA BIT STRING (SIZE (28)), cellId-index INTEGER (1..maxPLMN) } -- TAG-CELLACCESSRELATEDINFOEUTRA-5GC-STOP -- ASN1STOP
The IE CellAccessRelatedInfo-EUTRA-EPC indicates cell access related information for an LTE cell connected to EPC.
-- ASN1START -- TAG-CELLACCESSRELATEDINFOEUTRA-EPC-START CellAccessRelatedInfo-EUTRA-EPC ::= SEQUENCE { plmn-IdentityList-eutra-epc PLMN-IdentityList-EUTRA-EPC, trackingAreaCode-eutra-epc BIT STRING (SIZE (16)), cellIdentity-eutra-epc BIT STRING (SIZE (28)) } PLMN-IdentityList-EUTRA-EPC::= SEQUENCE (SIZE (1..maxPLMN)) OF PLMN-Identity -- TAG-CELLACCESSRELATEDINFOEUTRA-EPC-STOP -- ASN1STOP
The CellGroupConfig IE is used to configure a master cell group (MCG) or secondary cell group (SCG). A cell group comprises of one MAC entity, a set of logical channels with associated RLC entities and of a primary cell (SpCell) and one or more secondary cells (SCells).
-- ASN1START -- TAG-CELLGROUPCONFIG-START -- Configuration of one Cell-Group: CellGroupConfig ::= SEQUENCE { cellGroupId CellGroupId,rlc-BearerToAddModListConfiguration of the MAC Logical Channel, the corresponding RLC entities and association with radio bearers.SEQUENCE (SIZE(1..maxLC-ID)) OF RLC-BearerConfig OPTIONAL, -- Need N rlc-BearerToReleaseList SEQUENCE (SIZE(1..maxLC-ID)) OF LogicalChannelIdentity OPTIONAL, -- Need Nmac-CellGroupConfigMAC parameters applicable for the entire cell group.MAC-CellGroupConfig OPTIONAL, -- Need M physicalCellGroupConfig PhysicalCellGroupConfig OPTIONAL, -- Need MspCellConfigParameters for the SpCell of this cell group (PCell of MCG or PSCell of SCG).SpCellConfig OPTIONAL, -- Need MsCellToAddModListList of seconary serving cells (SCells) to be added or modified.SEQUENCE (SIZE (1..maxNrofSCells)) OF SCellConfig OPTIONAL, -- Need NsCellToReleaseListList of secondary serving cells (SCells) to be released.SEQUENCE (SIZE (1..maxNrofSCells)) OF SCellIndex OPTIONAL, -- Need N ..., [[reportUplinkTxDirectCurrentEnables reporting of uplink and supplementary uplink Direct Current location information upon BWP configuration and reconfiguration. This field is only present when the BWP configuration is modified or any serving cell is added or removed. This field is absent in the IE CellGroupConfig when provided as part of RRCSetup message. If UE is configured with SUL carrier, UE reports both UL and SUL Direct Current locations.ENUMERATED {true} OPTIONAL -- Cond BWP-Reconfig ]] } -- Serving cell specific MAC and PHY parameters for a SpCell: SpCellConfig ::= SEQUENCE {servCellIndexServing cell ID of a PSCell. The PCell of the Master Cell Group uses ID = 0.ServCellIndex OPTIONAL, -- Cond SCGreconfigurationWithSyncParameters for the synchronous reconfiguration to the target SpCell.ReconfigurationWithSync OPTIONAL, -- Cond ReconfWithSyncrlf-TimersAndConstantsTimers and constants for detecting and triggering cell-level radio link failure. For the SCG, rlf-TimersAndConstants can only be set to setup and is always included at SCG addition.SetupRelease { RLF-TimersAndConstants } OPTIONAL, -- Need MrlmInSyncOutOfSyncThresholdBLER threshold pair index for IS/OOS indication generation, see TS 38.133 [14], table 8.1.1-1. n1 corresponds to the value 1. When the field is absent, the UE applies the value 0. Whenever this is reconfigured, UE resets N310 and N311, and stops T310, if running.Network does not include this field.ENUMERATED {n1} OPTIONAL, -- Need S spCellConfigDedicated ServingCellConfig OPTIONAL, -- Need M ... } ReconfigurationWithSync ::= SEQUENCE { spCellConfigCommon ServingCellConfigCommon OPTIONAL, -- Need M newUE-Identity RNTI-Value, t304 ENUMERATED {ms50, ms100, ms150, ms200, ms500, ms1000, ms2000, ms10000},rach-ConfigDedicatedRandom access configuration to be used for the reconfiguration with sync (e.g. handover). The UE performs the RA according to these parameters in the firstActiveUplinkBWP (see UplinkConfig).CHOICE { uplink RACH-ConfigDedicated, supplementaryUplink RACH-ConfigDedicated } OPTIONAL, -- Need N ..., [[smtcThe SSB periodicity/offset/duration configuration of target cell for NR SCell addition. The network sets the periodicityAndOffset to indicate the same periodicity as ssb-periodicityServingCell in sCellConfigCommon. The smtcis based on the timing of theSpCell of associated cell group. In case of inter-RAT handover to NR, the timing reference is the NR PCell. In case of intra-NR PCell change (standalone NR) or NR PSCell change (EN-DC), the timing reference is the target SpCell. If the field is absent, the UE uses the SMTC in the measObjectNR having the same SSB frequency and subcarrier spacing, as configured before the reception of the RRC message.SSB-MTC OPTIONAL -- Need S ]] } SCellConfig ::= SEQUENCE { sCellIndex SCellIndex, sCellConfigCommon ServingCellConfigCommon OPTIONAL, -- Cond SCellAdd sCellConfigDedicated ServingCellConfig OPTIONAL, -- Cond SCellAddMod ..., [[smtcThe SSB periodicity/offset/duration configuration of target cell for NR SCell addition. The network sets the periodicityAndOffset to indicate the same periodicity as ssb-periodicityServingCell in sCellConfigCommon. The smtcis based on the timing of theSpCell of associated cell group. In case of inter-RAT handover to NR, the timing reference is the NR PCell. In case of intra-NR PCell change (standalone NR) or NR PSCell change (EN-DC), the timing reference is the target SpCell. If the field is absent, the UE uses the SMTC in the measObjectNR having the same SSB frequency and subcarrier spacing, as configured before the reception of the RRC message.SSB-MTC OPTIONAL -- Need S ]] } -- TAG-CELLGROUPCONFIG-STOP -- ASN1STOP
CellGroupConfig field descriptions |
---|
mac-CellGroupConfig MAC parameters applicable for the entire cell group. |
rlc-BearerToAddModList Configuration of the MAC Logical Channel, the corresponding RLC entities and association with radio bearers. |
reportUplinkTxDirectCurrent Enables reporting of uplink and supplementary uplink Direct Current location information upon BWP configuration and reconfiguration. This field is only present when the BWP configuration is modified or any serving cell is added or removed. This field is absent in the IE CellGroupConfig when provided as part of RRCSetup message. If UE is configured with SUL carrier, UE reports both UL and SUL Direct Current locations. |
rlmInSyncOutOfSyncThreshold BLER threshold pair index for IS/OOS indication generation, see TS 38.133 [14], table 8.1.1-1. n1 corresponds to the value 1. When the field is absent, the UE applies the value 0. Whenever this is reconfigured, UE resets N310 and N311, and stops T310, if running.Network does not include this field. |
sCellToAddModList List of seconary serving cells (SCells) to be added or modified. |
sCellToReleaseList List of secondary serving cells (SCells) to be released. |
spCellConfig Parameters for the SpCell of this cell group (PCell of MCG or PSCell of SCG). |
ReconfigurationWithSync field descriptions |
---|
rach-ConfigDedicated Random access configuration to be used for the reconfiguration with sync (e.g. handover). The UE performs the RA according to these parameters in the firstActiveUplinkBWP (see UplinkConfig). |
smtc The SSB periodicity/offset/duration configuration of target cell for NR PSCell change,NR PCell change and (for NR-DC) NR PSCell addition. The network sets the periodicityAndOffset to indicate the same periodicity as ssb-periodicityServingCell in spCellConfigCommon. For case of NR PCell change and NR PSCell addition, the smtcis based on the timing reference of (source)PCell. For case of NR PSCell change, it is based on the timing reference of source PSCell. If the field is absent, the UE uses the SMTC in the measObjectNR having the same SSB frequency and subcarrier spacing,as configured before the reception of the RRC message. |
SCellConfig field descriptions |
---|
smtc The SSB periodicity/offset/duration configuration of target cell for NR SCell addition. The network sets the periodicityAndOffset to indicate the same periodicity as ssb-periodicityServingCell in sCellConfigCommon. The smtcis based on the timing of theSpCell of associated cell group. In case of inter-RAT handover to NR, the timing reference is the NR PCell. In case of intra-NR PCell change (standalone NR) or NR PSCell change (EN-DC), the timing reference is the target SpCell. If the field is absent, the UE uses the SMTC in the measObjectNR having the same SSB frequency and subcarrier spacing, as configured before the reception of the RRC message. |
SpCellConfig field descriptions |
---|
reconfigurationWithSync Parameters for the synchronous reconfiguration to the target SpCell. |
rlf-TimersAndConstants Timers and constants for detecting and triggering cell-level radio link failure. For the SCG, rlf-TimersAndConstants can only be set to setup and is always included at SCG addition. |
servCellIndex Serving cell ID of a PSCell. The PCell of the Master Cell Group uses ID = 0. |
Conditional Presence | Explanation |
---|---|
BWP-Reconfig | The field is optionally present, Need N, if the BWPs are reconfigured or if serving cells are added or removed. Otherwise it is absent. |
ReconfWithSync | The field is mandatory present in the RRCReconfiguration message: -in each configured CellGroupConfig for which the SpCell changes, -in the masterCellGroupat change of AS security key derived from KgNB, -in the secondaryCellGroup at: -PSCell addition, -update of required SI for PSCell, -change of AS security key derived from S-KgNBin NR-DC while the UE is configured with at least one radio bearer with keyToUse set to secondary and that is not released by this RRCReconfiguration message. -MN handover in (NG)EN-DC. Otherwise it is optionally present, need M. The field is absent in RRCResume or RRCSetup messages. |
SCellAdd | The field is mandatory present upon SCell addition; otherwise it is absent, Need M. |
SCellAddMod | The field is mandatory present upon SCell addition; otherwise it is optionally present, need M. |
SCG | The field is mandatory present in an SpCellConfig for the PSCell. It is absent otherwise. |
The IE CellGroupId is used to identify a cell group. Value 0 identifies the master cell group. Other values identify secondary cell groups. In this version of the specification only values 0 and 1 are supported.
The IE CellIdentity is used to unambiguously identify a cell within a PLMN.
The IE CellReselectionPriority concerns the absolute priority of the concerned carrier frequency, as used by the cell reselection procedure. Corresponds to parameter "priority" in TS 38.304 [20]. Value 0 means lowest priority. The UE behaviour for the case the field is absent, if applicable, is specified in TS 38.304 [20].
The IE CellReselectionSubPriority indicates a fractional value to be added to the value of cellReselectionPriority to obtain the absolute priority of the concerned carrier frequency for E-UTRA and NR. Value oDot2 corresponds to 0.2, value oDot4 corresponds to 0.4 and so on.
The IE CGI-InfoEUTRA indicates EUTRA cell access related information, which is reported by the UE as part of E-UTRA report CGI procedure.
-- ASN1START -- TAG-CGI-INFOEUTRA-START CGI-InfoEUTRA ::= SEQUENCE { cgi-info-EPC SEQUENCE { cgi-info-EPC-legacy CellAccessRelatedInfo-EUTRA-EPC, cgi-info-EPC-list SEQUENCE (SIZE (1..maxPLMN)) OF CellAccessRelatedInfo-EUTRA-EPC OPTIONAL } OPTIONAL, cgi-info-5GC SEQUENCE (SIZE (1..maxPLMN)) OF CellAccessRelatedInfo-EUTRA-5GC OPTIONAL, freqBandIndicator FreqBandIndicatorEUTRA, multiBandInfoList MultiBandInfoListEUTRA OPTIONAL, freqBandIndicatorPriority ENUMERATED {true} OPTIONAL } -- TAG-CGI-INFOEUTRA-STOP -- ASN1STOP
The IE CGI-InfoNR indicates cell access related information, which is reported by the UE as part of report CGI procedure.
-- ASN1START -- TAG-CGI-INFO-NR-START CGI-InfoNR ::= SEQUENCE { plmn-IdentityInfoList PLMN-IdentityInfoList OPTIONAL, frequencyBandList MultiFrequencyBandListNR OPTIONAL,noSIB1Contains ssb-SubcarrierOffset and pdcch-ConfigSIB1 fields acquired by the UE from MIB of the cell for which report CGI procedure was requested by the network in case SIB1 was not broadcast by the cell.SEQUENCE { ssb-SubcarrierOffset INTEGER (0..15), pdcch-ConfigSIB1 PDCCH-ConfigSIB1 } OPTIONAL, ... } -- TAG-CGI-INFO-NR-STOP -- ASN1STOP
CGI-InfoNRfield descriptions |
---|
noSIB1 Contains ssb-SubcarrierOffset and pdcch-ConfigSIB1 fields acquired by the UE from MIB of the cell for which report CGI procedure was requested by the network in case SIB1 was not broadcast by the cell. |
The IE CodebookConfig is used to configure codebooks of Type-I and Type-II (see TS 38.214 [19], clause 5.2.2.2)
-- ASN1START -- TAG-CODEBOOKCONFIG-START CodebookConfig ::= SEQUENCE {codebookTypeCodebookType including possibly sub-types and the corresponding parameters for each (see TS 38.214 [19], clause 5.2.2.2).CHOICE { type1 SEQUENCE { subType CHOICE { typeI-SinglePanel SEQUENCE { nrOfAntennaPorts CHOICE { two SEQUENCE {twoTX-CodebookSubsetRestrictionCodebook subset restriction for 2TX codebook (see TS 38.214 [19]clause 5.2.2.2.1).BIT STRING (SIZE (6)) }, moreThanTwo SEQUENCE {n1-n2Number of antenna ports in first (n1) and second (n2) dimension and codebook subset restriction (see TS 38.214 [19] clause 5.2.2.2.1).CHOICE { two-one-TypeI-SinglePanel-Restriction BIT STRING (SIZE (8)), two-two-TypeI-SinglePanel-Restriction BIT STRING (SIZE (64)), four-one-TypeI-SinglePanel-Restriction BIT STRING (SIZE (16)), three-two-TypeI-SinglePanel-Restriction BIT STRING (SIZE (96)), six-one-TypeI-SinglePanel-Restriction BIT STRING (SIZE (24)), four-two-TypeI-SinglePanel-Restriction BIT STRING (SIZE (128)), eight-one-TypeI-SinglePanel-Restriction BIT STRING (SIZE (32)), four-three-TypeI-SinglePanel-Restriction BIT STRING (SIZE (192)), six-two-TypeI-SinglePanel-Restriction BIT STRING (SIZE (192)), twelve-one-TypeI-SinglePanel-Restriction BIT STRING (SIZE (48)), four-four-TypeI-SinglePanel-Restriction BIT STRING (SIZE (256)), eight-two-TypeI-SinglePanel-Restriction BIT STRING (SIZE (256)), sixteen-one-TypeI-SinglePanel-Restriction BIT STRING (SIZE (64)) },typeI-SinglePanel-codebookSubsetRestriction-i2i2 codebook subset restriction for Type I Single-panel codebook used when reportQuantity is CRI/Ri/i1/CQI (see TS 38.214 [19]clause 5.2.2.2.1).BIT STRING (SIZE (16)) OPTIONAL -- Need R } },typeI-SinglePanel-ri-RestrictionRestriction for RI for TypeI-SinglePanel-RI-Restriction (see TS 38.214 [19], clause 5.2.2.2.1).BIT STRING (SIZE (8)) }, typeI-MultiPanel SEQUENCE {ng-n1-n2Codebook subset restriction for Type I Multi-panel codebook (see TS 38.214 [19], clause 5.2.2.2.2).CHOICE { two-two-one-TypeI-MultiPanel-Restriction BIT STRING (SIZE (8)), two-four-one-TypeI-MultiPanel-Restriction BIT STRING (SIZE (16)), four-two-one-TypeI-MultiPanel-Restriction BIT STRING (SIZE (8)), two-two-two-TypeI-MultiPanel-Restriction BIT STRING (SIZE (64)), two-eight-one-TypeI-MultiPanel-Restriction BIT STRING (SIZE (32)), four-four-one-TypeI-MultiPanel-Restriction BIT STRING (SIZE (16)), two-four-two-TypeI-MultiPanel-Restriction BIT STRING (SIZE (128)), four-two-two-TypeI-MultiPanel-Restriction BIT STRING (SIZE (64)) },ri-RestrictionRestriction for RI for TypeI-MultiPanel-RI-Restriction (see TS 38.214 [19], clause 5.2.2.2.2).BIT STRING (SIZE (4)) } },codebookModeCodebookMode as specified in TS 38.214 [19],clause 5.2.2.2.2.INTEGER (1..2) }, type2 SEQUENCE { subType CHOICE { typeII SEQUENCE {n1-n2-codebookSubsetRestrictionNumber of antenna ports in first (n1) and second (n2) dimension and codebook subset restriction (see TS 38.214 [19]clause 5.2.2.2.3). Number of bits for codebook subset restriction is CEIL(log2(nchoosek(O1*O2,4)))+8*n1*n2 where nchoosek(a,b) = a!/(b!(a-b)!).CHOICE { two-one BIT STRING (SIZE (16)), two-two BIT STRING (SIZE (43)), four-one BIT STRING (SIZE (32)), three-two BIT STRING (SIZE (59)), six-one BIT STRING (SIZE (48)), four-two BIT STRING (SIZE (75)), eight-one BIT STRING (SIZE (64)), four-three BIT STRING (SIZE (107)), six-two BIT STRING (SIZE (107)), twelve-one BIT STRING (SIZE (96)), four-four BIT STRING (SIZE (139)), eight-two BIT STRING (SIZE (139)), sixteen-one BIT STRING (SIZE (128)) },typeII-RI-RestrictionRestriction for RI for TypeII-RI-Restriction (see TS 38.214 [19], clause 5.2.2.2.3).BIT STRING (SIZE (2)) }, typeII-PortSelection SEQUENCE {portSelectionSamplingSizeThe size of the port selection codebook (parameter d).ENUMERATED {n1, n2, n3, n4} OPTIONAL, -- Need RtypeII-PortSelectionRI-RestrictionRestriction for RI for TypeII-PortSelection-RI-Restriction (see TS 38.214 [19], clause 5.2.2.4).BIT STRING (SIZE (2)) } },phaseAlphabetSizeThe size of the PSK alphabet, QPSK or 8-PSK.ENUMERATED {n4, n8},subbandAmplitudeIf subband amplitude reporting is activated (true).BOOLEAN,numberOfBeamsNumber of beams, L, used for linear combination.ENUMERATED {two, three, four} } } } -- TAG-CODEBOOKCONFIG-STOP -- ASN1STOP
CodebookConfig field descriptions |
---|
codebookMode CodebookMode as specified in TS 38.214 [19],clause 5.2.2.2.2. |
codebookType CodebookType including possibly sub-types and the corresponding parameters for each (see TS 38.214 [19], clause 5.2.2.2). |
n1-n2-codebookSubsetRestriction Number of antenna ports in first (n1) and second (n2) dimension and codebook subset restriction (see TS 38.214 [19]clause 5.2.2.2.3). Number of bits for codebook subset restriction is CEIL(log2(nchoosek(O1*O2,4)))+8*n1*n2 where nchoosek(a,b) = a!/(b!(a-b)!). |
n1-n2 Number of antenna ports in first (n1) and second (n2) dimension and codebook subset restriction (see TS 38.214 [19] clause 5.2.2.2.1). |
ng-n1-n2 Codebook subset restriction for Type I Multi-panel codebook (see TS 38.214 [19], clause 5.2.2.2.2). |
numberOfBeams Number of beams, L, used for linear combination. |
phaseAlphabetSize The size of the PSK alphabet, QPSK or 8-PSK. |
portSelectionSamplingSize The size of the port selection codebook (parameter d). |
ri-Restriction Restriction for RI for TypeI-MultiPanel-RI-Restriction (see TS 38.214 [19], clause 5.2.2.2.2). |
subbandAmplitude If subband amplitude reporting is activated (true). |
twoTX-CodebookSubsetRestriction Codebook subset restriction for 2TX codebook (see TS 38.214 [19]clause 5.2.2.2.1). |
typeI-SinglePanel-codebookSubsetRestriction-i2 i2 codebook subset restriction for Type I Single-panel codebook used when reportQuantity is CRI/Ri/i1/CQI (see TS 38.214 [19]clause 5.2.2.2.1). |
typeI-SinglePanel-ri-Restriction Restriction for RI for TypeI-SinglePanel-RI-Restriction (see TS 38.214 [19], clause 5.2.2.2.1). |
typeII-PortSelectionRI-Restriction Restriction for RI for TypeII-PortSelection-RI-Restriction (see TS 38.214 [19], clause 5.2.2.4). |
typeII-RI-Restriction Restriction for RI for TypeII-RI-Restriction (see TS 38.214 [19], clause 5.2.2.2.3). |
The IE ConfiguredGrantConfig is used to configure uplink transmission without dynamic grant according to two possible schemes. The actual uplink grant may either be configured via RRC (type1) or provided via the PDCCH (addressed to CS-RNTI) (type2).
-- ASN1START -- TAG-CONFIGUREDGRANTCONFIG-START ConfiguredGrantConfig ::= SEQUENCE {frequencyHoppingThe value intraSlot enables 'Intra-slot frequency hopping' and the value interSlot enables 'Inter-slot frequency hopping'. If the field is absent, frequency hopping is not configured.ENUMERATED {intraSlot, interSlot} OPTIONAL, -- Need Scg-DMRS-ConfigurationDMRS configuration (see TS 38.214 [19], clause 6.1.2.3).DMRS-UplinkConfig,mcs-TableIndicates the MCS table the UE shall use for PUSCH without transform precoding. If the field is absent the UE applies the value qam64.ENUMERATED {qam256, qam64LowSE} OPTIONAL, -- Need Smcs-TableTransformPrecoderIndicates the MCS table the UE shall use for PUSCH with transform precoding. If the field is absent the UE applies the value qam64.ENUMERATED {qam256, qam64LowSE} OPTIONAL, -- Need Suci-OnPUSCHSelection between and configuration of dynamic and semi-static beta-offset. For Type 1 UL data transmission without grant, uci-OnPUSCH should be set to semiStatic.SetupRelease { CG-UCI-OnPUSCH } OPTIONAL, -- Need MresourceAllocationConfiguration of resource allocation type 0 and resource allocation type 1. For Type 1 UL data transmission without grant, resourceAllocation should be resourceAllocationType0 or resourceAllocationType1.ENUMERATED { resourceAllocationType0, resourceAllocationType1, dynamicSwitch },rbg-SizeSelection between configuration 1 and configuration 2 for RBG size for PUSCH. The UE does not apply this field if resourceAllocation is set to resourceAllocationType1. Otherwise, the UE applies the value config1 when the field is absent. Note: rbg-Size is used when the transformPrecoder parameter is disabled.ENUMERATED {config2} OPTIONAL, -- Need SpowerControlLoopToUseClosed control loop to apply (see TS 38.213 [13], clause 7.1.1).ENUMERATED {n0, n1},p0-PUSCH-AlphaIndex of the P0-PUSCH-AlphaSet to be used for this configuration.P0-PUSCH-AlphaSetId,transformPrecoderEnables or disables transform precoding for type1 and type2. If the field is absent, the UE enables or disables transform precoding in accordance with the field msg3-transformPrecoder in RACH-ConfigCommon, see TS 38.214 [19], clause 6.1.3.ENUMERATED {enabled, disabled} OPTIONAL, -- Need SnrofHARQ-ProcessesThe number of HARQ processes configured. It applies for both Type 1 and Type 2. See TS 38.321 [3], clause 5.4.1.INTEGER(1..16),repKNumber of repetitions K, see TS 38.214 [19].ENUMERATED {n1, n2, n4, n8},repK-RVThe redundancy version (RV) sequence to use. See TS 38.214 [19], clause 6.1.2. The network configures this field if repetitions are used, i.e., if repK is set to n2, n4 or n8. Otherwise, the field is absent.ENUMERATED {s1-0231, s2-0303, s3-0000} OPTIONAL, -- Need RperiodicityPeriodicity for UL transmission without UL grant for type 1 and type 2 (see TS 38.321 [3], clause 5.8.2). The following periodicities are supported depending on the configured subcarrier spacing [symbols]: 15 kHz:2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640} 30 kHz:2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 640, 1280} 60 kHz with normal CP2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1280, 2560} 60 kHz with ECP:2, 6, n*12, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1280, 2560} 120 kHz:2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2560, 5120}ENUMERATED { sym2, sym7, sym1x14, sym2x14, sym4x14, sym5x14, sym8x14, sym10x14, sym16x14, sym20x14, sym32x14, sym40x14, sym64x14, sym80x14, sym128x14, sym160x14, sym256x14, sym320x14, sym512x14, sym640x14, sym1024x14, sym1280x14, sym2560x14, sym5120x14, sym6, sym1x12, sym2x12, sym4x12, sym5x12, sym8x12, sym10x12, sym16x12, sym20x12, sym32x12, sym40x12, sym64x12, sym80x12, sym128x12, sym160x12, sym256x12, sym320x12, sym512x12, sym640x12, sym1280x12, sym2560x12 },configuredGrantTimerIndicates the initial value of the configured grant timer (see TS 38.321 [3]) in multiples of periodicity.INTEGER (1..64) OPTIONAL, -- Need Rrrc-ConfiguredUplinkGrantConfiguration for "configured grant" transmission with fully RRC-configured UL grant (Type1). If this field is absent the UE uses UL grant configured by DCI addressed to CS-RNTI (Type2). Type 1 configured grant may be configured for UL or SUL, but not for both simultaneously.SEQUENCE {timeDomainOffsetOffset related to SFN=0, see TS 38.321 [3], clause 5.8.2.INTEGER (0..5119),timeDomainAllocationIndicates a combination of start symbol and length and PUSCH mapping type, see TS 38.214 [19], clause 6.1.2 and TS 38.212 [17], clause 7.3.1.INTEGER (0..15),frequencyDomainAllocationIndicates the frequency domain resource allocation, see TS 38.214 [19], clause 6.1.2, and TS 38.212 [17], clause 7.3.1).BIT STRING (SIZE(18)),antennaPortIndicates the antenna port(s) to be used for this configuration, and the maximum bitwidth is 5. See TS 38.214 [19], clause 6.1.2, and TS 38.212 [17], clause 7.3.1.INTEGER (0..31),dmrs-SeqInitializationThe network configures this field if transformPrecoder is disabled. Otherwise the field is absent.INTEGER (0..1) OPTIONAL, -- Need RprecodingAndNumberOfLayersIndicates the precoding and number of layers (see TS 38.212 [17], clause 7.3.1.1.2, and TS 38.214 [19], clause 6.1.2.3).INTEGER (0..63),srs-ResourceIndicatorIndicates the SRS resource to be used.INTEGER (0..15) OPTIONAL, -- Need RmcsAndTBSThe modulation order, target code rate and TB size (see TS38.214 [19], clause 6.1.2). The NW does not configure the values 28~31 in this version of the specification.INTEGER (0..31),frequencyHoppingOffsetFrequency hopping offset used when frequency hopping is enabled (see TS 38.214 [19], clause 6.1.2 and clause 6.3).INTEGER (1.. maxNrofPhysicalResourceBlocks-1) OPTIONAL, -- Need RpathlossReferenceIndexIndicates the reference signal index used as PUSCH pathloss reference (see TS 38.213 [13], clause 7.1.1).INTEGER (0..maxNrofPUSCH-PathlossReferenceRSs-1), ... } OPTIONAL, -- Need R ... } CG-UCI-OnPUSCH ::= CHOICE { dynamic SEQUENCE (SIZE (1..4)) OF BetaOffsets, semiStatic BetaOffsets } -- TAG-CONFIGUREDGRANTCONFIG-STOP -- ASN1STOP
ConfiguredGrantConfig field descriptions |
---|
antennaPort Indicates the antenna port(s) to be used for this configuration, and the maximum bitwidth is 5. See TS 38.214 [19], clause 6.1.2, and TS 38.212 [17], clause 7.3.1. |
cg-DMRS-Configuration DMRS configuration (see TS 38.214 [19], clause 6.1.2.3). |
configuredGrantTimer Indicates the initial value of the configured grant timer (see TS 38.321 [3]) in multiples of periodicity. |
dmrs-SeqInitialization The network configures this field if transformPrecoder is disabled. Otherwise the field is absent. |
frequencyDomainAllocation Indicates the frequency domain resource allocation, see TS 38.214 [19], clause 6.1.2, and TS 38.212 [17], clause 7.3.1). |
frequencyHopping The value intraSlot enables 'Intra-slot frequency hopping' and the value interSlot enables 'Inter-slot frequency hopping'. If the field is absent, frequency hopping is not configured. |
frequencyHoppingOffset Frequency hopping offset used when frequency hopping is enabled (see TS 38.214 [19], clause 6.1.2 and clause 6.3). |
mcs-Table Indicates the MCS table the UE shall use for PUSCH without transform precoding. If the field is absent the UE applies the value qam64. |
mcs-TableTransformPrecoder Indicates the MCS table the UE shall use for PUSCH with transform precoding. If the field is absent the UE applies the value qam64. |
mcsAndTBS The modulation order, target code rate and TB size (see TS38.214 [19], clause 6.1.2). The NW does not configure the values 28~31 in this version of the specification. |
nrofHARQ-Processes The number of HARQ processes configured. It applies for both Type 1 and Type 2. See TS 38.321 [3], clause 5.4.1. |
p0-PUSCH-Alpha Index of the P0-PUSCH-AlphaSet to be used for this configuration. |
pathlossReferenceIndex Indicates the reference signal index used as PUSCH pathloss reference (see TS 38.213 [13], clause 7.1.1). |
periodicity Periodicity for UL transmission without UL grant for type 1 and type 2 (see TS 38.321 [3], clause 5.8.2). The following periodicities are supported depending on the configured subcarrier spacing [symbols]: 15 kHz:2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640} 30 kHz:2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 640, 1280} 60 kHz with normal CP2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1280, 2560} 60 kHz with ECP:2, 6, n*12, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1280, 2560} 120 kHz:2, 7, n*14, where n={1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2560, 5120} |
powerControlLoopToUse Closed control loop to apply (see TS 38.213 [13], clause 7.1.1). |
precodingAndNumberOfLayers Indicates the precoding and number of layers (see TS 38.212 [17], clause 7.3.1.1.2, and TS 38.214 [19], clause 6.1.2.3). |
rbg-Size Selection between configuration 1 and configuration 2 for RBG size for PUSCH. The UE does not apply this field if resourceAllocation is set to resourceAllocationType1. Otherwise, the UE applies the value config1 when the field is absent. Note: rbg-Size is used when the transformPrecoder parameter is disabled. |
repK-RV The redundancy version (RV) sequence to use. See TS 38.214 [19], clause 6.1.2. The network configures this field if repetitions are used, i.e., if repK is set to n2, n4 or n8. Otherwise, the field is absent. |
repK Number of repetitions K, see TS 38.214 [19]. |
resourceAllocation Configuration of resource allocation type 0 and resource allocation type 1. For Type 1 UL data transmission without grant, resourceAllocation should be resourceAllocationType0 or resourceAllocationType1. |
rrc-ConfiguredUplinkGrant Configuration for "configured grant" transmission with fully RRC-configured UL grant (Type1). If this field is absent the UE uses UL grant configured by DCI addressed to CS-RNTI (Type2). Type 1 configured grant may be configured for UL or SUL, but not for both simultaneously. |
srs-ResourceIndicator Indicates the SRS resource to be used. |
timeDomainAllocation Indicates a combination of start symbol and length and PUSCH mapping type, see TS 38.214 [19], clause 6.1.2 and TS 38.212 [17], clause 7.3.1. |
timeDomainOffset Offset related to SFN=0, see TS 38.321 [3], clause 5.8.2. |
transformPrecoder Enables or disables transform precoding for type1 and type2. If the field is absent, the UE enables or disables transform precoding in accordance with the field msg3-transformPrecoder in RACH-ConfigCommon, see TS 38.214 [19], clause 6.1.3. |
uci-OnPUSCH Selection between and configuration of dynamic and semi-static beta-offset. For Type 1 UL data transmission without grant, uci-OnPUSCH should be set to semiStatic. |
The IE ConnEstFailureControl is used to configure parameters for connection establishment failure control.
-- ASN1START -- TAG-CONNESTFAILURECONTROL-START ConnEstFailureControl ::= SEQUENCE {connEstFailCountNumber of times that the UE detects T300 expiry on the same cell before applying connEstFailOffset.ENUMERATED {n1, n2, n3, n4},connEstFailOffsetValidityAmount of time that the UE applies connEstFailOffset before removing the offset from evaluation of the cell. Value s30 corresponds to 30 seconds, values60 corresponds to 60 seconds, and so on.ENUMERATED {s30, s60, s120, s240, s300, s420, s600, s900},connEstFailOffsetParameter "Qoffsettemp" in TS 38.304 [20]. If the field is absent, the value of infinity shall be used for "Qoffsettemp".INTEGER (0..15) OPTIONAL -- Need S } -- TAG-CONNESTFAILURECONTROL-STOP -- ASN1STOP
ConnEstFailureControl field descriptions |
---|
connEstFailCount Number of times that the UE detects T300 expiry on the same cell before applying connEstFailOffset. |
connEstFailOffset Parameter "Qoffsettemp" in TS 38.304 [20]. If the field is absent, the value of infinity shall be used for "Qoffsettemp". |
connEstFailOffsetValidity Amount of time that the UE applies connEstFailOffset before removing the offset from evaluation of the cell. Value s30 corresponds to 30 seconds, values60 corresponds to 60 seconds, and so on. |
The IE ControlResourceSet is used to configure a time/frequency control resource set (CORESET) in which to search for downlink control information (see TS 38.213 [13], clause 10.1).
-- ASN1START -- TAG-CONTROLRESOURCESET-START ControlResourceSet ::= SEQUENCE {controlResourceSetIdValue 0 identifies the common CORESET configured in MIB and in ServingCellConfigCommon (controlResourceSetZero) and is hence not used here in the ControlResourceSet IE. Values 1..maxNrofControlResourceSets-1 identify CORESETs configured by dedicated signalling or in SIB1. The controlResourceSetId is unique among the BWPs of a serving cell.ControlResourceSetId,frequencyDomainResourcesFrequency domain resources for the CORESET. Each bit corresponds a group of 6 RBs, with grouping starting from the first RB group (see TS 38.213 [13], clause 10.1) in the BWP. The first (left-most / most significant) bit corresponds to the first RB group in the BWP, and so on. A bit that is set to 1 indicates that this RB group belongs to the frequency domain resource of this CORESET. Bits corresponding to a group of RBs not fully contained in the bandwidth part within which the CORESET is configured are set to zero (see TS 38.211 [16], clause 7.3.2.2).BIT STRING (SIZE (45)),durationContiguous time duration of the CORESET in number of symbols (see TS 38.211 [16], clause 7.3.2.2).INTEGER (1..maxCoReSetDuration),cce-REG-MappingTypeMapping of Control Channel Elements (CCE) to Resource Element Groups (REG) (see TS 38.211 [16], clauses 7.3.2.2 and 7.4.1.3.2).CHOICE { interleaved SEQUENCE {reg-BundleSizeResource Element Groups (REGs) can be bundled to create REG bundles. This parameter defines the size of such bundles (see TS 38.211 [16], clause 7.3.2.2).ENUMERATED {n2, n3, n6},interleaverSizeInterleaver-size (see TS 38.211 [16], clause 7.3.2.2).ENUMERATED {n2, n3, n6},shiftIndexWhen the field is absent the UE applies the value of the physCellIdconfigured for this serving cell (see TS 38.211 [16], clause 7.3.2.2).INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPTIONAL -- Need S }, nonInterleaved NULL },precoderGranularityPrecoder granularity in frequency domain (see TS 38.211 [16], clauses 7.3.2.2 and 7.4.1.3.2).ENUMERATED {sameAsREG-bundle, allContiguousRBs},tci-StatesPDCCH-ToAddListA subset of the TCI states defined in pdsch-Config included in the BWP-DownlinkDedicated corresponding to the serving cell and to the DL BWP to which the ControlResourceSet belong to. They are used for providing QCL relationships between the DL RS(s) in one RS Set (TCI-State) and the PDCCH DMRS ports (see TS 38.213 [13], clause 6.). The network configures at most maxNrofTCI-StatesPDCCH entries.SEQUENCE(SIZE(1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL, -- Cond NotSIB1-initialBWP tci-StatesPDCCH-ToReleaseList SEQUENCE(SIZE(1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL, -- Cond NotSIB1-initialBWPtci-PresentInDCIThis field indicates if TCI field is present or absent in DL-related DCI. When the field is absent the UE considers the TCI to be absent/disabled. In case of cross carrier scheduling, the network sets this field to enabled for the ControlResourceSet used for cross carrier scheduling in the scheduling cell (see TS 38.214 [19], clause 5.1.5).ENUMERATED {enabled} OPTIONAL, -- Need Spdcch-DMRS-ScramblingIDPDCCH DMRS scrambling initialization (see TS 38.211 [16], clause 7.4.1.3.1). When the field is absent the UE applies the value of the physCellId configured for this serving cell.INTEGER (0..65535) OPTIONAL, -- Need S ... } -- TAG-CONTROLRESOURCESET-STOP -- ASN1STOP
ControlResourceSet field descriptions |
---|
cce-REG-MappingType Mapping of Control Channel Elements (CCE) to Resource Element Groups (REG) (see TS 38.211 [16], clauses 7.3.2.2 and 7.4.1.3.2). |
controlResourceSetId Value 0 identifies the common CORESET configured in MIB and in ServingCellConfigCommon (controlResourceSetZero) and is hence not used here in the ControlResourceSet IE. Values 1..maxNrofControlResourceSets-1 identify CORESETs configured by dedicated signalling or in SIB1. The controlResourceSetId is unique among the BWPs of a serving cell. |
duration Contiguous time duration of the CORESET in number of symbols (see TS 38.211 [16], clause 7.3.2.2). |
frequencyDomainResources Frequency domain resources for the CORESET. Each bit corresponds a group of 6 RBs, with grouping starting from the first RB group (see TS 38.213 [13], clause 10.1) in the BWP. The first (left-most / most significant) bit corresponds to the first RB group in the BWP, and so on. A bit that is set to 1 indicates that this RB group belongs to the frequency domain resource of this CORESET. Bits corresponding to a group of RBs not fully contained in the bandwidth part within which the CORESET is configured are set to zero (see TS 38.211 [16], clause 7.3.2.2). |
interleaverSize Interleaver-size (see TS 38.211 [16], clause 7.3.2.2). |
pdcch-DMRS-ScramblingID PDCCH DMRS scrambling initialization (see TS 38.211 [16], clause 7.4.1.3.1). When the field is absent the UE applies the value of the physCellId configured for this serving cell. |
precoderGranularity Precoder granularity in frequency domain (see TS 38.211 [16], clauses 7.3.2.2 and 7.4.1.3.2). |
reg-BundleSize Resource Element Groups (REGs) can be bundled to create REG bundles. This parameter defines the size of such bundles (see TS 38.211 [16], clause 7.3.2.2). |
shiftIndex When the field is absent the UE applies the value of the physCellIdconfigured for this serving cell (see TS 38.211 [16], clause 7.3.2.2). |
tci-PresentInDCI This field indicates if TCI field is present or absent in DL-related DCI. When the field is absent the UE considers the TCI to be absent/disabled. In case of cross carrier scheduling, the network sets this field to enabled for the ControlResourceSet used for cross carrier scheduling in the scheduling cell (see TS 38.214 [19], clause 5.1.5). |
tci-StatesPDCCH-ToAddList A subset of the TCI states defined in pdsch-Config included in the BWP-DownlinkDedicated corresponding to the serving cell and to the DL BWP to which the ControlResourceSet belong to. They are used for providing QCL relationships between the DL RS(s) in one RS Set (TCI-State) and the PDCCH DMRS ports (see TS 38.213 [13], clause 6.). The network configures at most maxNrofTCI-StatesPDCCH entries. |
Conditional Presence | Explanation |
---|---|
NotSIB1-initialBWP | The field is absent in SIB1 and in the PDCCH-ConfigCommon of the initial BWP in ServingCellConfigCommon, if SIB1 is broadcasted. Otherwise, it is optionally present, Need N. |
The ControlResourceSetId IE concerns a short identity, used to identify a control resource set within a serving cell. The ControlResourceSetId = 0 identifies the ControlResourceSet#0 configured via PBCH (MIB) and in controlResourceSetZero (ServingCellConfigCommon). The ID space is used across the BWPs of a Serving Cell.
The IE ControlResourceSetZero is used to configure CORESET#0 of the initial BWP (see TS 38.213 [13], clause 13).
The IE CrossCarrierSchedulingConfig is used to specify the configuration when the cross-carrier scheduling is used in a cell.
-- ASN1START -- TAG-CrossCarrierSchedulingConfig-START CrossCarrierSchedulingConfig ::= SEQUENCE { schedulingCellInfo CHOICE {ownParameters for self-scheduling, i.e., a serving cell is scheduled by its own PDCCH.SEQUENCE { -- Cross carrier scheduling: scheduling cellcif-PresenceThe field is used to indicate whether carrier indicator field is present (value true) or not (value false) in PDCCH DCI formats, see TS 38.213 [13]. If cif-Presence is set to true, the CIF value indicating a grant or assignment for this cell is 0.BOOLEAN },otherParameters for cross-carrier scheduling, i.e., a serving cell is scheduled by a PDCCH on another (scheduling) cell. The network configures this field only for SCells.SEQUENCE { -- Cross carrier scheduling: scheduled cellschedulingCellIdIndicates which cell signals the downlink allocations and uplink grants, if applicable, for the concerned SCell. In case the UE is configured with DC, the scheduling cell is part of the same cell group (i.e. MCG or SCG) as the scheduled cell. In case the UE is configured with two PUCCH groups, the scheduling cell and the scheduled cell are within the same PUCCH group.ServCellIndex,cif-InSchedulingCellThe field indicates the CIF value used in the scheduling cell to indicate a grant or assignment applicable for this cell, see TS 38.213 [13].INTEGER (1..7) } }, ... } -- TAG-CrossCarrierSchedulingConfig-STOP -- ASN1STOP
CrossCarrierSchedulingConfig field descriptions |
---|
cif-Presence The field is used to indicate whether carrier indicator field is present (value true) or not (value false) in PDCCH DCI formats, see TS 38.213 [13]. If cif-Presence is set to true, the CIF value indicating a grant or assignment for this cell is 0. |
cif-InSchedulingCell The field indicates the CIF value used in the scheduling cell to indicate a grant or assignment applicable for this cell, see TS 38.213 [13]. |
other Parameters for cross-carrier scheduling, i.e., a serving cell is scheduled by a PDCCH on another (scheduling) cell. The network configures this field only for SCells. |
own Parameters for self-scheduling, i.e., a serving cell is scheduled by its own PDCCH. |
schedulingCellId Indicates which cell signals the downlink allocations and uplink grants, if applicable, for the concerned SCell. In case the UE is configured with DC, the scheduling cell is part of the same cell group (i.e. MCG or SCG) as the scheduled cell. In case the UE is configured with two PUCCH groups, the scheduling cell and the scheduled cell are within the same PUCCH group. |
The CSI-AperiodicTriggerStateList IE is used to configure the UE with a list of aperiodic trigger states. Each codepoint of the DCI field "CSI request" is associated with one trigger state (see TS 38.321 [3], clause 6.1.3.13). Upon reception of the value associated with a trigger state, the UE will perform measurement of CSI-RS, CSI-IM and/or SSB (reference signals) and aperiodic reporting on L1 according to all entries in the associatedReportConfigInfoList for that trigger state.
-- ASN1START -- TAG-CSI-APERIODICTRIGGERSTATELIST-START CSI-AperiodicTriggerStateList ::= SEQUENCE (SIZE (1..maxNrOfCSI-AperiodicTriggers)) OF CSI-AperiodicTriggerState CSI-AperiodicTriggerState ::= SEQUENCE { associatedReportConfigInfoList SEQUENCE (SIZE(1..maxNrofReportConfigPerAperiodicTrigger)) OF CSI-AssociatedReportConfigInfo, ... } CSI-AssociatedReportConfigInfo ::= SEQUENCE {reportConfigIdThe reportConfigId of one of the CSI-ReportConfigToAddMod configured in CSI-MeasConfigCSI-ReportConfigId, resourcesForChannel CHOICE { nzp-CSI-RS SEQUENCE {resourceSetNZP-CSI-RS-ResourceSet for channel measurements. Entry number in nzp-CSI-RS-ResourceSetList in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to thesecond entry, and so on).INTEGER (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig),qcl-infoList of references to TCI-States for providing the QCL source and QCL type for each NZP-CSI-RS-Resource listed in nzp-CSI-RS-Resources of the NZP-CSI-RS-ResourceSet indicated by resourceSetwithin nzp-CSI-RS. Each TCI-StateId refers to the TCI-State which has this value for tci-StateId and is defined in tci-StatesToAddModList in the PDSCH-Config included in the BWP-Downlink corresponding to the serving cell and to the DL BWP to which the resourcesForChannelMeasurement (in the CSI-ReportConfig indicated by reportConfigId above) belong to. First entry in qcl-info corresponds to first entry in nzp-CSI-RS-Resources of that NZP-CSI-RS-ResourceSet, second entry in qcl-info corresponds to second entry in nzp-CSI-RS-Resources, and so on (see TS 38.214 [19], clause 5.2.1.5.1)SEQUENCE (SIZE(1..maxNrofAP-CSI-RS-ResourcesPerSet)) OF TCI-StateId OPTIONAL -- Cond Aperiodic },csi-SSB-ResourceSetCSI-SSB-ResourceSet for channel measurements. Entry number in csi-SSB-ResourceSetList in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to the second entry, and so on).INTEGER (1..maxNrofCSI-SSB-ResourceSetsPerConfig) },csi-IM-ResourcesForInterferenceCSI-IM-ResourceSet for interference measurement. Entry number in csi-IM-ResourceSetList in the CSI-ResourceConfig indicated by csi-IM-ResourcesForInterference in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to the second entry, and so on). The indicated CSI-IM-ResourceSet should have exactly the same number of resources like the NZP-CSI-RS-ResourceSet indicated in resourceSetwithin nzp-CSI-RS.INTEGER(1..maxNrofCSI-IM-ResourceSetsPerConfig) OPTIONAL, -- Cond CSI-IM-ForInterferencenzp-CSI-RS-ResourcesForInterferenceNZP-CSI-RS-ResourceSet for interference measurement. Entry number in nzp-CSI-RS-ResourceSetList in the CSI-ResourceConfig indicated by nzp-CSI-RS-ResourcesForInterference in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to the second entry, and so on).INTEGER (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig) OPTIONAL, -- Cond NZP-CSI-RS-ForInterference ... } -- TAG-CSI-APERIODICTRIGGERSTATELIST-STOP -- ASN1STOP
CSI-AssociatedReportConfigInfo field descriptions |
---|
csi-IM-ResourcesForInterference CSI-IM-ResourceSet for interference measurement. Entry number in csi-IM-ResourceSetList in the CSI-ResourceConfig indicated by csi-IM-ResourcesForInterference in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to the second entry, and so on). The indicated CSI-IM-ResourceSet should have exactly the same number of resources like the NZP-CSI-RS-ResourceSet indicated in resourceSetwithin nzp-CSI-RS. |
csi-SSB-ResourceSet CSI-SSB-ResourceSet for channel measurements. Entry number in csi-SSB-ResourceSetList in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to the second entry, and so on). |
nzp-CSI-RS-ResourcesForInterference NZP-CSI-RS-ResourceSet for interference measurement. Entry number in nzp-CSI-RS-ResourceSetList in the CSI-ResourceConfig indicated by nzp-CSI-RS-ResourcesForInterference in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to the second entry, and so on). |
qcl-info List of references to TCI-States for providing the QCL source and QCL type for each NZP-CSI-RS-Resource listed in nzp-CSI-RS-Resources of the NZP-CSI-RS-ResourceSet indicated by resourceSetwithin nzp-CSI-RS. Each TCI-StateId refers to the TCI-State which has this value for tci-StateId and is defined in tci-StatesToAddModList in the PDSCH-Config included in the BWP-Downlink corresponding to the serving cell and to the DL BWP to which the resourcesForChannelMeasurement (in the CSI-ReportConfig indicated by reportConfigId above) belong to. First entry in qcl-info corresponds to first entry in nzp-CSI-RS-Resources of that NZP-CSI-RS-ResourceSet, second entry in qcl-info corresponds to second entry in nzp-CSI-RS-Resources, and so on (see TS 38.214 [19], clause 5.2.1.5.1) |
reportConfigId The reportConfigId of one of the CSI-ReportConfigToAddMod configured in CSI-MeasConfig |
resourceSet NZP-CSI-RS-ResourceSet for channel measurements. Entry number in nzp-CSI-RS-ResourceSetList in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement in the CSI-ReportConfig indicated by reportConfigId above (value 1 corresponds to the first entry, value 2 to thesecond entry, and so on). |
Conditional Presence | Explanation |
---|---|
Aperiodic | The field is mandatory present if the NZP-CSI-RS-Resources in the associated resourceSet have the resourceType aperiodic. The field is absent otherwise. |
CSI-IM-ForInterference | This field is mandatory present if the CSI-ReportConfig identified by reportConfigId is configured with csi-IM-ResourcesForInterference; otherwise it is absent. |
NZP-CSI-RS-ForInterference | This field is mandatory present if the CSI-ReportConfig identified by reportConfigId is configured with nzp-CSI-RS-ResourcesForInterference; otherwise it is absent. |
The IE CSI-FrequencyOccupation is used to configure the frequency domain occupation of a channel state information measurement resource (e.g. NZP-CSI-RS-Resource, CSI-IM-Resource).
-- ASN1START -- TAG-CSI-FREQUENCYOCCUPATION-START CSI-FrequencyOccupation ::= SEQUENCE {startingRBPRB where this CSI resource starts in relation to common resource block #0 (CRB#0) on the common resource block grid. Only multiples of 4 are allowed (0, 4, ...)INTEGER (0..maxNrofPhysicalResourceBlocks-1),nrofRBsNumber of PRBs across which this CSI resource spans. Only multiples of 4 are allowed. The smallest configurable number is the minimum of 24 and the width of the associated BWP. If the configured value is larger than the width of the corresponding BWP, the UE shall assume that the actual CSI-RS bandwidth is equal to the width of the BWP.INTEGER (24..maxNrofPhysicalResourceBlocksPlus1), ... } -- TAG-CSI-FREQUENCYOCCUPATION-STOP -- ASN1STOP
CSI-FrequencyOccupation field descriptions |
---|
nrofRBs Number of PRBs across which this CSI resource spans. Only multiples of 4 are allowed. The smallest configurable number is the minimum of 24 and the width of the associated BWP. If the configured value is larger than the width of the corresponding BWP, the UE shall assume that the actual CSI-RS bandwidth is equal to the width of the BWP. |
startingRB PRB where this CSI resource starts in relation to common resource block #0 (CRB#0) on the common resource block grid. Only multiples of 4 are allowed (0, 4, ...) |
The IE CSI-IM-Resource is used to configure one CSI Interference Management (IM) resource.
-- ASN1START -- TAG-CSI-IM-RESOURCE-START CSI-IM-Resource ::= SEQUENCE { csi-IM-ResourceId CSI-IM-ResourceId,csi-IM-ResourceElementPatternThe resource element pattern (Pattern0 (2,2) or Pattern1 (4,1)) with corresponding parameters (see TS 38.214 [19], clause 5.2.2.4)CHOICE { pattern0 SEQUENCE {subcarrierLocation-p0OFDM subcarrier occupancy of the CSI-IM resource for Pattern0 (see TS 38.214 [19], clause 5.2.2.4)ENUMERATED { s0, s2, s4, s6, s8, s10 },symbolLocation-p0OFDM symbol location of the CSI-IM resource for Pattern0 (see TS 38.214 [19], clause 5.2.2.4)INTEGER (0..12) }, pattern1 SEQUENCE {subcarrierLocation-p1OFDM subcarrier occupancy of the CSI-IM resource for Pattern1 (see TS 38.214 [19], clause 5.2.2.4)ENUMERATED { s0, s4, s8 },symbolLocation-p1OFDM symbol location of the CSI-IM resource for Pattern1 (see TS 38.214 [19], clause 5.2.2.4)INTEGER (0..13) } } OPTIONAL, -- Need MfreqBandFrequency-occupancy of CSI-IM (see TS 38.214 [19], clause 5.2.2.4)CSI-FrequencyOccupation OPTIONAL, -- Need MperiodicityAndOffsetPeriodicity and slot offset for periodic/semi-persistent CSI-IM. Network always configures the UE with a value for this field for periodic and semi-persistent CSI-IM-Resources (as indicated in CSI-ResourceConfig). A change of configuration between periodic or semi-persistent and aperiodic for a CSI-IM-Resource is not supported without a release and add.CSI-ResourcePeriodicityAndOffset OPTIONAL, -- Cond PeriodicOrSemiPersistent ... } -- TAG-CSI-IM-RESOURCE-STOP -- ASN1STOP
CSI-IM-Resource field descriptions |
---|
csi-IM-ResourceElementPattern The resource element pattern (Pattern0 (2,2) or Pattern1 (4,1)) with corresponding parameters (see TS 38.214 [19], clause 5.2.2.4) |
freqBand Frequency-occupancy of CSI-IM (see TS 38.214 [19], clause 5.2.2.4) |
periodicityAndOffset Periodicity and slot offset for periodic/semi-persistent CSI-IM. Network always configures the UE with a value for this field for periodic and semi-persistent CSI-IM-Resources (as indicated in CSI-ResourceConfig). A change of configuration between periodic or semi-persistent and aperiodic for a CSI-IM-Resource is not supported without a release and add. |
subcarrierLocation-p0 OFDM subcarrier occupancy of the CSI-IM resource for Pattern0 (see TS 38.214 [19], clause 5.2.2.4) |
subcarrierLocation-p1 OFDM subcarrier occupancy of the CSI-IM resource for Pattern1 (see TS 38.214 [19], clause 5.2.2.4) |
symbolLocation-p0 OFDM symbol location of the CSI-IM resource for Pattern0 (see TS 38.214 [19], clause 5.2.2.4) |
symbolLocation-p1 OFDM symbol location of the CSI-IM resource for Pattern1 (see TS 38.214 [19], clause 5.2.2.4) |
Conditional Presence | Explanation |
---|---|
PeriodicOrSemiPersistent | The field is optionally present, Need M, for periodic and semi-persistent CSI-IM-Resources (as indicated in CSI-ResourceConfig). The field is absent otherwise. |
The IE CSI-IM-ResourceId is used to identify one CSI-IM-Resource.
The IE CSI-IM-ResourceSet is used to configure a set of one or more CSI Interference Management (IM) resources (their IDs) and set-specific parameters.
-- ASN1START -- TAG-CSI-IM-RESOURCESET-START CSI-IM-ResourceSet ::= SEQUENCE { csi-IM-ResourceSetId CSI-IM-ResourceSetId,csi-IM-ResourcesCSI-IM-Resources associated with this CSI-IM-ResourceSet (see TS 38.214 [19], clause 5.2).SEQUENCE (SIZE(1..maxNrofCSI-IM-ResourcesPerSet)) OF CSI-IM-ResourceId, ... } -- TAG-CSI-IM-RESOURCESET-STOP -- ASN1STOP
CSI-IM-ResourceSet field descriptions |
---|
csi-IM-Resources CSI-IM-Resources associated with this CSI-IM-ResourceSet (see TS 38.214 [19], clause 5.2). |
The IE CSI-IM-ResourceSetId is used to identify CSI-IM-ResourceSets.
The IE CSI-MeasConfig is used to configure CSI-RS (reference signals) belonging to the serving cell in which CSI-MeasConfig is included, channel state information reports to be transmitted on PUCCH on the serving cell in which CSI-MeasConfig is included and channel state information reports on PUSCH triggered by DCI received on the serving cell in which CSI-MeasConfig is included. See also TS 38.214 [19], clause 5.2.
-- ASN1START -- TAG-CSI-MEASCONFIG-START CSI-MeasConfig ::= SEQUENCE {nzp-CSI-RS-ResourceToAddModListPool of NZP-CSI-RS-Resource which can be referred to from NZP-CSI-RS-ResourceSet.SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-Resources)) OF NZP-CSI-RS-Resource OPTIONAL, -- Need N nzp-CSI-RS-ResourceToReleaseList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-Resources)) OF NZP-CSI-RS-ResourceId OPTIONAL, -- Need Nnzp-CSI-RS-ResourceSetToAddModListPool of NZP-CSI-RS-ResourceSet which can be referred to from CSI-ResourceConfig or from MAC CEs.SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSets)) OF NZP-CSI-RS-ResourceSet OPTIONAL, -- Need N nzp-CSI-RS-ResourceSetToReleaseList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSets)) OF NZP-CSI-RS-ResourceSetId OPTIONAL, -- Need Ncsi-IM-ResourceToAddModListPool of CSI-IM-Resource which can be referred to from CSI-IM-ResourceSet.SEQUENCE (SIZE (1..maxNrofCSI-IM-Resources)) OF CSI-IM-Resource OPTIONAL, -- Need N csi-IM-ResourceToReleaseList SEQUENCE (SIZE (1..maxNrofCSI-IM-Resources)) OF CSI-IM-ResourceId OPTIONAL, -- Need Ncsi-IM-ResourceSetToAddModListPool of CSI-IM-ResourceSet which can be referred to from CSI-ResourceConfig or from MAC CEs.SEQUENCE (SIZE (1..maxNrofCSI-IM-ResourceSets)) OF CSI-IM-ResourceSet OPTIONAL, -- Need N csi-IM-ResourceSetToReleaseList SEQUENCE (SIZE (1..maxNrofCSI-IM-ResourceSets)) OF CSI-IM-ResourceSetId OPTIONAL, -- Need Ncsi-SSB-ResourceSetToAddModListPool of CSI-SSB-ResourceSet which can be referred to from CSI-ResourceConfig.SEQUENCE (SIZE (1..maxNrofCSI-SSB-ResourceSets)) OF CSI-SSB-ResourceSet OPTIONAL, -- Need N csi-SSB-ResourceSetToReleaseList SEQUENCE (SIZE (1..maxNrofCSI-SSB-ResourceSets)) OF CSI-SSB-ResourceSetId OPTIONAL, -- Need Ncsi-ResourceConfigToAddModListConfigured CSI resource settings as specified in TS 38.214 [19]clause 5.2.1.2.SEQUENCE (SIZE (1..maxNrofCSI-ResourceConfigurations)) OF CSI-ResourceConfig OPTIONAL, -- Need N csi-ResourceConfigToReleaseList SEQUENCE (SIZE (1..maxNrofCSI-ResourceConfigurations)) OF CSI-ResourceConfigId OPTIONAL, -- Need Ncsi-ReportConfigToAddModListConfigured CSI report settings as specified in TS 38.214 [19]clause 5.2.1.1.SEQUENCE (SIZE (1..maxNrofCSI-ReportConfigurations)) OF CSI-ReportConfig OPTIONAL, -- Need N csi-ReportConfigToReleaseList SEQUENCE (SIZE (1..maxNrofCSI-ReportConfigurations)) OF CSI-ReportConfigId OPTIONAL, -- Need NreportTriggerSizeSize of CSI request field in DCI (bits) (see TS 38.214 [19], clause 5.2.1.5.1).INTEGER (0..6) OPTIONAL, -- Need MaperiodicTriggerStateListContains trigger states for dynamically selecting one or more aperiodic and semi-persistent reporting configurations and/or triggering one or more aperiodic CSI-RS resource sets for channel and/or interference measurement.SetupRelease { CSI-AperiodicTriggerStateList } OPTIONAL, -- Need M semiPersistentOnPUSCH-TriggerStateList SetupRelease { CSI-SemiPersistentOnPUSCH-TriggerStateList } OPTIONAL, -- Need M ... } -- TAG-CSI-MEASCONFIG-STOP -- ASN1STOP
CSI-MeasConfig field descriptions |
---|
aperiodicTriggerStateList Contains trigger states for dynamically selecting one or more aperiodic and semi-persistent reporting configurations and/or triggering one or more aperiodic CSI-RS resource sets for channel and/or interference measurement. |
csi-IM-ResourceSetToAddModList Pool of CSI-IM-ResourceSet which can be referred to from CSI-ResourceConfig or from MAC CEs. |
csi-IM-ResourceToAddModList Pool of CSI-IM-Resource which can be referred to from CSI-IM-ResourceSet. |
csi-ReportConfigToAddModList Configured CSI report settings as specified in TS 38.214 [19]clause 5.2.1.1. |
csi-ResourceConfigToAddModList Configured CSI resource settings as specified in TS 38.214 [19]clause 5.2.1.2. |
csi-SSB-ResourceSetToAddModList Pool of CSI-SSB-ResourceSet which can be referred to from CSI-ResourceConfig. |
nzp-CSI-RS-ResourceSetToAddModList Pool of NZP-CSI-RS-ResourceSet which can be referred to from CSI-ResourceConfig or from MAC CEs. |
nzp-CSI-RS-ResourceToAddModList Pool of NZP-CSI-RS-Resource which can be referred to from NZP-CSI-RS-ResourceSet. |
reportTriggerSize Size of CSI request field in DCI (bits) (see TS 38.214 [19], clause 5.2.1.5.1). |
The IE CSI-ReportConfig is used to configure a periodic or semi-persistent report sent on PUCCH on the cell in which the CSI-ReportConfig is included, or to configure a semi-persistent or aperiodic report sent on PUSCH triggered by DCI received on the cell in which the CSI-ReportConfig is included (in this case, the cell on which the report is sent is determined by the received DCI). See TS 38.214 [19], clause 5.2.1.
-- ASN1START -- TAG-CSI-REPORTCONFIG-START CSI-ReportConfig ::= SEQUENCE { reportConfigId CSI-ReportConfigId,carrierIndicates in which serving cell the CSI-ResourceConfig indicated below are to be found. If the field is absent, the resources are on the same serving cell as this report configuration.ServCellIndex OPTIONAL, -- Need SresourcesForChannelMeasurementResources for channel measurement. csi-ResourceConfigId of a CSI-ResourceConfig included in the configuration of the serving cell indicated with the field "carrier" above. The CSI-ResourceConfig indicated here contains only NZP-CSI-RS resources and/or SSB resources. This CSI-ReportConfig is associated with the DL BWP indicated by bwp-Id in that CSI-ResourceConfig.CSI-ResourceConfigId,csi-IM-ResourcesForInterferenceCSI IM resources for interference measurement. csi-ResourceConfigId of a CSI-ResourceConfig included in the configuration of the serving cell indicated with the field "carrier" above. The CSI-ResourceConfig indicated here contains only CSI-IM resources. The bwp-Id in that CSI-ResourceConfig is the same value as the bwp-Id in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement.CSI-ResourceConfigId OPTIONAL, -- Need Rnzp-CSI-RS-ResourcesForInterferenceNZP CSI RS resources for interference measurement. csi-ResourceConfigId of a CSI-ResourceConfig included in the configuration of the serving cell indicated with the field "carrier" above. The CSI-ResourceConfig indicated here contains only NZP-CSI-RS resources. The bwp-Id in that CSI-ResourceConfig is the same value as the bwp-Id in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement.CSI-ResourceConfigId OPTIONAL, -- Need RreportConfigTypeTime domain behavior of reporting configuration.CHOICE { periodic SEQUENCE {reportSlotConfigPeriodicity and slot offset (see TS 38.214 [19], clause 5.2.1.4). If the field reportSlotConfig-v1530 is present, the UE shall ignore the value provided in reportSlotConfig (without suffix).CSI-ReportPeriodicityAndOffset,pucch-CSI-ResourceListIndicates which PUCCH resource to use for reporting on PUCCH.SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource }, semiPersistentOnPUCCH SEQUENCE {reportSlotConfigPeriodicity and slot offset (see TS 38.214 [19], clause 5.2.1.4). If the field reportSlotConfig-v1530 is present, the UE shall ignore the value provided in reportSlotConfig (without suffix).CSI-ReportPeriodicityAndOffset,pucch-CSI-ResourceListIndicates which PUCCH resource to use for reporting on PUCCH.SEQUENCE (SIZE (1..maxNrofBWPs)) OF PUCCH-CSI-Resource }, semiPersistentOnPUSCH SEQUENCE {reportSlotConfigPeriodicity and slot offset (see TS 38.214 [19], clause 5.2.1.4). If the field reportSlotConfig-v1530 is present, the UE shall ignore the value provided in reportSlotConfig (without suffix).ENUMERATED {sl5, sl10, sl20, sl40, sl80, sl160, sl320},reportSlotOffsetListTiming offset Y for semi persistent reporting using PUSCH. This field lists the allowed offset values. This list must have the same number of entries as the pusch-TimeDomainAllocationList in PUSCH-Config. A particular value is indicated in DCI. The network indicates in the DCI field of the UL grant, which of the configured report slot offsets the UE shall apply. The DCI value 0 corresponds to the first report slot offset in this list, the DCI value 1 corresponds to the second report slot offset in this list, and so on. The first report is transmitted in slot n+Y, second report in n+Y+P, where P is the configured periodicity. Timing offset Y for aperiodic reporting using PUSCH. This field lists the allowed offset values. This list must have the same number of entries as the pusch-TimeDomainAllocationList in PUSCH-Config. A particular value is indicated in DCI. The network indicates in the DCI field of the UL grant, which of the configured report slot offsets the UE shall apply. The DCI value 0 corresponds to the first report slot offset in this list, the DCI value 1 corresponds to the second report slot offset in this list, and so on (see TS 38.214 [19], clause6.1.2.1).SEQUENCE (SIZE (1.. maxNrofUL-Allocations)) OF INTEGER(0..32),p0alphaIndex of the p0-alpha set determining the power control for this CSI report transmission (see TS 38.214 [19], clause 6.2.1.2).P0-PUSCH-AlphaSetId }, aperiodic SEQUENCE {reportSlotOffsetListTiming offset Y for semi persistent reporting using PUSCH. This field lists the allowed offset values. This list must have the same number of entries as the pusch-TimeDomainAllocationList in PUSCH-Config. A particular value is indicated in DCI. The network indicates in the DCI field of the UL grant, which of the configured report slot offsets the UE shall apply. The DCI value 0 corresponds to the first report slot offset in this list, the DCI value 1 corresponds to the second report slot offset in this list, and so on. The first report is transmitted in slot n+Y, second report in n+Y+P, where P is the configured periodicity. Timing offset Y for aperiodic reporting using PUSCH. This field lists the allowed offset values. This list must have the same number of entries as the pusch-TimeDomainAllocationList in PUSCH-Config. A particular value is indicated in DCI. The network indicates in the DCI field of the UL grant, which of the configured report slot offsets the UE shall apply. The DCI value 0 corresponds to the first report slot offset in this list, the DCI value 1 corresponds to the second report slot offset in this list, and so on (see TS 38.214 [19], clause6.1.2.1).SEQUENCE (SIZE (1..maxNrofUL-Allocations)) OF INTEGER(0..32) } },reportQuantityThe CSI related quantities to report. see TS 38.214 [19], clause 5.2.1.CHOICE { none NULL, cri-RI-PMI-CQI NULL, cri-RI-i1 NULL, cri-RI-i1-CQI SEQUENCE {pdsch-BundleSizeForCSIPRB bundling size to assume for CQI calculation when reportQuantity is CRI/RI/i1/CQI. If the field is absent, the UE assumes that no PRB bundling is applied (see TS 38.214 [19], clause 5.2.1.4.2).ENUMERATED {n2, n4} OPTIONAL -- Need S }, cri-RI-CQI NULL, cri-RSRP NULL, ssb-Index-RSRP NULL, cri-RI-LI-PMI-CQI NULL },reportFreqConfigurationReporting configuration in the frequency domain. (see TS 38.214 [19], clause 5.2.1.4).SEQUENCE {cqi-FormatIndicatorIndicates whether the UE shall report a single (wideband) or multiple (subband) CQI (see TS 38.214 [19], clause 5.2.1.4).ENUMERATED { widebandCQI, subbandCQI } OPTIONAL, -- Need Rpmi-FormatIndicatorIndicates whether the UE shall report a single (wideband) or multiple (subband) PMI. (see TS 38.214 [19], clause 5.2.1.4).ENUMERATED { widebandPMI, subbandPMI } OPTIONAL, -- Need Rcsi-ReportingBandIndicates a contiguous or non-contiguous subset of subbands in the bandwidth part which CSI shall be reported for. Each bit in the bit-string represents one subband. The right-most bit in the bit string represents the lowest subband in the BWP. The choice determines the number of subbands (subbands3 for 3 subbands, subbands4 for 4 subbands, and so on) (see TS 38.214 [19], clause 5.2.1.4). This field is absent if there are less than 24 PRBs (no sub band) and present otherwise(see TS 38.214 [19], clause 5.2.1.4).CHOICE { subbands3 BIT STRING(SIZE(3)), subbands4 BIT STRING(SIZE(4)), subbands5 BIT STRING(SIZE(5)), subbands6 BIT STRING(SIZE(6)), subbands7 BIT STRING(SIZE(7)), subbands8 BIT STRING(SIZE(8)), subbands9 BIT STRING(SIZE(9)), subbands10 BIT STRING(SIZE(10)), subbands11 BIT STRING(SIZE(11)), subbands12 BIT STRING(SIZE(12)), subbands13 BIT STRING(SIZE(13)), subbands14 BIT STRING(SIZE(14)), subbands15 BIT STRING(SIZE(15)), subbands16 BIT STRING(SIZE(16)), subbands17 BIT STRING(SIZE(17)), subbands18 BIT STRING(SIZE(18)), ..., subbands19-v1530 BIT STRING(SIZE(19)) } OPTIONAL -- Need S } OPTIONAL, -- Need RtimeRestrictionForChannelMeasurementsTime domain measurement restriction for the channel (signal) measurements (see TS 38.214 [19], clause 5.2.1.1).ENUMERATED {configured, notConfigured},timeRestrictionForInterferenceMeasurementsTime domain measurement restriction for interference measurements (see TS 38.214 [19], clause 5.2.1.1).ENUMERATED {configured, notConfigured},codebookConfigCodebook configuration for Type-1 or Type-2 including codebook subset restriction.CodebookConfig OPTIONAL, -- Need RdummyThis field is not used in the specification. If received it shall be ignored by the UE.ENUMERATED {n1, n2} OPTIONAL, -- Need RgroupBasedBeamReportingTurning on/off group beam based reporting (see TS 38.214 [19], clause 5.2.1.4).CHOICE { enabled NULL, disabled SEQUENCE {nrofReportedRSThe number (N) of measured RS resources to be reported per report setting in a non-group-based report. N <= N_max, where N_max is either 2 or 4 depending on UE capability. (see TS 38.214 [19], clause 5.2.1.4) When the field is absent the UE applies the value 1.ENUMERATED {n1, n2, n3, n4} OPTIONAL -- Need S } },cqi-TableWhich CQI table to use for CQI calculation (see TS 38.214 [19], clause 5.2.2.1).ENUMERATED {table1, table2, table3, spare1} OPTIONAL, -- Need RsubbandSizeIndicates one out of two possible BWP-dependent values for the subband size as indicated in TS 38.214 [19], table 5.2.1.4-2 . If csi-ReportingBand is absent, the UE shall ignore this field.ENUMERATED {value1, value2},non-PMI-PortIndicationPort indication for RI/CQI calculation. For each CSI-RS resource in the linked ResourceConfig for channel measurement, a port indication for each rank R, indicating which R ports to use. Applicable only for non-PMI feedback (see TS 38.214 [19], clause 5.2.1.4.2). The first entry in non-PMI-PortIndication corresponds to the NZP-CSI-RS-Resource indicated by the first entry in nzp-CSI-RS-Resources in the NZP-CSI-RS-ResourceSet indicated in the first entry of nzp-CSI-RS-ResourceSetList of the CSI-ResourceConfig whose CSI-ResourceConfigId is indicated in a CSI-MeasId together with the above CSI-ReportConfigId; the second entry in non-PMI-PortIndication corresponds to the NZP-CSI-RS-Resource indicated by the second entry in nzp-CSI-RS-Resources in the NZP-CSI-RS-ResourceSet indicated in the first entry of nzp-CSI-RS-ResourceSetList of the same CSI-ResourceConfig, and so on until the NZP-CSI-RS-Resource indicated by the last entry in nzp-CSI-RS-Resources in the in the NZP-CSI-RS-ResourceSet indicated in the first entry of nzp-CSI-RS-ResourceSetList of the same CSI-ResourceConfig. Then the next entry corresponds to the NZP-CSI-RS-Resource indicated by the first entry in nzp-CSI-RS-Resources in the NZP-CSI-RS-ResourceSet indicated in the second entry of nzp-CSI-RS-ResourceSetList of the same CSI-ResourceConfig and so on.SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerConfig)) OF PortIndexFor8Ranks OPTIONAL, -- Need R ..., [[ semiPersistentOnPUSCH-v1530 SEQUENCE { reportSlotConfig-v1530 ENUMERATED {sl4, sl8, sl16} } OPTIONAL -- Need R ]] } CSI-ReportPeriodicityAndOffset ::= CHOICE { slots4 INTEGER(0..3), slots5 INTEGER(0..4), slots8 INTEGER(0..7), slots10 INTEGER(0..9), slots16 INTEGER(0..15), slots20 INTEGER(0..19), slots40 INTEGER(0..39), slots80 INTEGER(0..79), slots160 INTEGER(0..159), slots320 INTEGER(0..319) } PUCCH-CSI-Resource ::= SEQUENCE { uplinkBandwidthPartId BWP-Id,pucch-ResourcePUCCH resource for the associated uplink BWP. Only PUCCH-Resource of format 2, 3 and 4 is supported. The actual PUCCH-Resource is configured in PUCCH-Config and referred to by its ID.PUCCH-ResourceId } PortIndexFor8Ranks ::= CHOICE {portIndex8Port-Index configuration for up to rank 8. If present, the network configures port indexes for at least one of the ranks.SEQUENCE{ rank1-8 PortIndex8 OPTIONAL, -- Need R rank2-8 SEQUENCE(SIZE(2))OF PortIndex8 OPTIONAL, -- Need R rank3-8 SEQUENCE(SIZE(3))OF PortIndex8 OPTIONAL, -- Need R rank4-8 SEQUENCE(SIZE(4))OF PortIndex8 OPTIONAL, -- Need R rank5-8 SEQUENCE(SIZE(5))OF PortIndex8 OPTIONAL, -- Need R rank6-8 SEQUENCE(SIZE(6))OF PortIndex8 OPTIONAL, -- Need R rank7-8 SEQUENCE(SIZE(7))OF PortIndex8 OPTIONAL, -- Need R rank8-8 SEQUENCE(SIZE(8))OF PortIndex8 OPTIONAL -- Need R },portIndex4Port-Index configuration for up to rank 4. If present, the network configures port indexes for at least one of the ranks.SEQUENCE{ rank1-4 PortIndex4 OPTIONAL, -- Need R rank2-4 SEQUENCE(SIZE(2))OF PortIndex4 OPTIONAL, -- Need R rank3-4 SEQUENCE(SIZE(3))OF PortIndex4 OPTIONAL, -- Need R rank4-4 SEQUENCE(SIZE(4))OF PortIndex4 OPTIONAL -- Need R },portIndex2Port-Index configuration for up to rank 2. If present, the network configures port indexes for at least one of the ranks.SEQUENCE{ rank1-2 PortIndex2 OPTIONAL, -- Need R rank2-2 SEQUENCE(SIZE(2))OF PortIndex2 OPTIONAL -- Need R },portIndex1Port-Index configuration for rank 1.NULL } PortIndex8::= INTEGER (0..7) PortIndex4::= INTEGER (0..3) PortIndex2::= INTEGER (0..1) -- TAG-CSI-REPORTCONFIG-STOP -- ASN1STOP
CSI-ReportConfig field descriptions |
---|
carrier Indicates in which serving cell the CSI-ResourceConfig indicated below are to be found. If the field is absent, the resources are on the same serving cell as this report configuration. |
codebookConfig Codebook configuration for Type-1 or Type-2 including codebook subset restriction. |
cqi-FormatIndicator Indicates whether the UE shall report a single (wideband) or multiple (subband) CQI (see TS 38.214 [19], clause 5.2.1.4). |
cqi-Table Which CQI table to use for CQI calculation (see TS 38.214 [19], clause 5.2.2.1). |
csi-IM-ResourcesForInterference CSI IM resources for interference measurement. csi-ResourceConfigId of a CSI-ResourceConfig included in the configuration of the serving cell indicated with the field "carrier" above. The CSI-ResourceConfig indicated here contains only CSI-IM resources. The bwp-Id in that CSI-ResourceConfig is the same value as the bwp-Id in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement. |
csi-ReportingBand Indicates a contiguous or non-contiguous subset of subbands in the bandwidth part which CSI shall be reported for. Each bit in the bit-string represents one subband. The right-most bit in the bit string represents the lowest subband in the BWP. The choice determines the number of subbands (subbands3 for 3 subbands, subbands4 for 4 subbands, and so on) (see TS 38.214 [19], clause 5.2.1.4). This field is absent if there are less than 24 PRBs (no sub band) and present otherwise(see TS 38.214 [19], clause 5.2.1.4). |
dummy This field is not used in the specification. If received it shall be ignored by the UE. |
groupBasedBeamReporting Turning on/off group beam based reporting (see TS 38.214 [19], clause 5.2.1.4). |
non-PMI-PortIndication Port indication for RI/CQI calculation. For each CSI-RS resource in the linked ResourceConfig for channel measurement, a port indication for each rank R, indicating which R ports to use. Applicable only for non-PMI feedback (see TS 38.214 [19], clause 5.2.1.4.2). The first entry in non-PMI-PortIndication corresponds to the NZP-CSI-RS-Resource indicated by the first entry in nzp-CSI-RS-Resources in the NZP-CSI-RS-ResourceSet indicated in the first entry of nzp-CSI-RS-ResourceSetList of the CSI-ResourceConfig whose CSI-ResourceConfigId is indicated in a CSI-MeasId together with the above CSI-ReportConfigId; the second entry in non-PMI-PortIndication corresponds to the NZP-CSI-RS-Resource indicated by the second entry in nzp-CSI-RS-Resources in the NZP-CSI-RS-ResourceSet indicated in the first entry of nzp-CSI-RS-ResourceSetList of the same CSI-ResourceConfig, and so on until the NZP-CSI-RS-Resource indicated by the last entry in nzp-CSI-RS-Resources in the in the NZP-CSI-RS-ResourceSet indicated in the first entry of nzp-CSI-RS-ResourceSetList of the same CSI-ResourceConfig. Then the next entry corresponds to the NZP-CSI-RS-Resource indicated by the first entry in nzp-CSI-RS-Resources in the NZP-CSI-RS-ResourceSet indicated in the second entry of nzp-CSI-RS-ResourceSetList of the same CSI-ResourceConfig and so on. |
nrofReportedRS The number (N) of measured RS resources to be reported per report setting in a non-group-based report. N <= N_max, where N_max is either 2 or 4 depending on UE capability. (see TS 38.214 [19], clause 5.2.1.4) When the field is absent the UE applies the value 1. |
nzp-CSI-RS-ResourcesForInterference NZP CSI RS resources for interference measurement. csi-ResourceConfigId of a CSI-ResourceConfig included in the configuration of the serving cell indicated with the field "carrier" above. The CSI-ResourceConfig indicated here contains only NZP-CSI-RS resources. The bwp-Id in that CSI-ResourceConfig is the same value as the bwp-Id in the CSI-ResourceConfig indicated by resourcesForChannelMeasurement. |
p0alpha Index of the p0-alpha set determining the power control for this CSI report transmission (see TS 38.214 [19], clause 6.2.1.2). |
pdsch-BundleSizeForCSI PRB bundling size to assume for CQI calculation when reportQuantity is CRI/RI/i1/CQI. If the field is absent, the UE assumes that no PRB bundling is applied (see TS 38.214 [19], clause 5.2.1.4.2). |
pmi-FormatIndicator Indicates whether the UE shall report a single (wideband) or multiple (subband) PMI. (see TS 38.214 [19], clause 5.2.1.4). |
pucch-CSI-ResourceList Indicates which PUCCH resource to use for reporting on PUCCH. |
reportConfigType Time domain behavior of reporting configuration. |
reportFreqConfiguration Reporting configuration in the frequency domain. (see TS 38.214 [19], clause 5.2.1.4). |
reportQuantity The CSI related quantities to report. see TS 38.214 [19], clause 5.2.1. |
reportSlotConfig Periodicity and slot offset (see TS 38.214 [19], clause 5.2.1.4). If the field reportSlotConfig-v1530 is present, the UE shall ignore the value provided in reportSlotConfig (without suffix). |
reportSlotOffsetList Timing offset Y for semi persistent reporting using PUSCH. This field lists the allowed offset values. This list must have the same number of entries as the pusch-TimeDomainAllocationList in PUSCH-Config. A particular value is indicated in DCI. The network indicates in the DCI field of the UL grant, which of the configured report slot offsets the UE shall apply. The DCI value 0 corresponds to the first report slot offset in this list, the DCI value 1 corresponds to the second report slot offset in this list, and so on. The first report is transmitted in slot n+Y, second report in n+Y+P, where P is the configured periodicity. Timing offset Y for aperiodic reporting using PUSCH. This field lists the allowed offset values. This list must have the same number of entries as the pusch-TimeDomainAllocationList in PUSCH-Config. A particular value is indicated in DCI. The network indicates in the DCI field of the UL grant, which of the configured report slot offsets the UE shall apply. The DCI value 0 corresponds to the first report slot offset in this list, the DCI value 1 corresponds to the second report slot offset in this list, and so on (see TS 38.214 [19], clause6.1.2.1). |
resourcesForChannelMeasurement Resources for channel measurement. csi-ResourceConfigId of a CSI-ResourceConfig included in the configuration of the serving cell indicated with the field "carrier" above. The CSI-ResourceConfig indicated here contains only NZP-CSI-RS resources and/or SSB resources. This CSI-ReportConfig is associated with the DL BWP indicated by bwp-Id in that CSI-ResourceConfig. |
subbandSize Indicates one out of two possible BWP-dependent values for the subband size as indicated in TS 38.214 [19], table 5.2.1.4-2 . If csi-ReportingBand is absent, the UE shall ignore this field. |
timeRestrictionForChannelMeasurements Time domain measurement restriction for the channel (signal) measurements (see TS 38.214 [19], clause 5.2.1.1). |
timeRestrictionForInterferenceMeasurements Time domain measurement restriction for interference measurements (see TS 38.214 [19], clause 5.2.1.1). |
PortIndexFor8Ranks field descriptions |
---|
portIndex8 Port-Index configuration for up to rank 8. If present, the network configures port indexes for at least one of the ranks. |
portIndex4 Port-Index configuration for up to rank 4. If present, the network configures port indexes for at least one of the ranks. |
portIndex2 Port-Index configuration for up to rank 2. If present, the network configures port indexes for at least one of the ranks. |
portIndex1 Port-Index configuration for rank 1. |
PUCCH-CSI-Resource field descriptions |
---|
pucch-Resource PUCCH resource for the associated uplink BWP. Only PUCCH-Resource of format 2, 3 and 4 is supported. The actual PUCCH-Resource is configured in PUCCH-Config and referred to by its ID. |
The IE CSI-ReportConfigId is used to identify one CSI-ReportConfig.
The IE CSI-ResourceConfig defines a group of one or more NZP-CSI-RS-ResourceSet, CSI-IM-ResourceSet and/or CSI-SSB-ResourceSet.
-- ASN1START -- TAG-CSI-RESOURCECONFIG-START CSI-ResourceConfig ::= SEQUENCE {csi-ResourceConfigIdUsed in CSI-ReportConfig to refer to an instance of CSI-ResourceConfig.CSI-ResourceConfigId, csi-RS-ResourceSetList CHOICE { nzp-CSI-RS-SSB SEQUENCE {nzp-CSI-RS-ResourceSetListList of references to NZP CSI-RS resources used for CSI measurement and reporting in a CSI-RS resource set. Contains up to maxNrofNZP-CSI-RS-ResourceSetsPerConfig resource sets if resourceType is 'aperiodic' and 1 otherwise (see TS 38.214 [19], clause 5.2.1.2).SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig)) OF NZP-CSI-RS-ResourceSetId OPTIONAL, -- Need Rcsi-SSB-ResourceSetListList of references to SSB resources used for beam measurement and reporting in a CSI-RS resource set (see TS 38.214 [19], clause5.2.1.2).SEQUENCE (SIZE (1..maxNrofCSI-SSB-ResourceSetsPerConfig)) OF CSI-SSB-ResourceSetId OPTIONAL -- Need R },csi-IM-ResourceSetListList of references to CSI-IM resources used for CSI measurement and reporting in a CSI-RS resource set. Contains up to maxNrofCSI-IM-ResourceSetsPerConfig resource sets if resourceType is 'aperiodic' and 1 otherwise (see TS 38.214 [19], clause 5.2.1.2).SEQUENCE (SIZE (1..maxNrofCSI-IM-ResourceSetsPerConfig)) OF CSI-IM-ResourceSetId },bwp-IdThe DL BWP which the CSI-RS associated with this CSI-ResourceConfig are located in (see TS 38.214 [19], clause 5.2.1.2.BWP-Id,resourceTypeTime domain behavior of resource configuration (see TS 38.214 [19], clause 5.2.1.2). It does not apply to resources provided in the csi-SSB-ResourceSetList.ENUMERATED { aperiodic, semiPersistent, periodic }, ... } -- TAG-CSI-RESOURCECONFIG-STOP -- ASN1STOP
CSI-ResourceConfig field descriptions |
---|
bwp-Id The DL BWP which the CSI-RS associated with this CSI-ResourceConfig are located in (see TS 38.214 [19], clause 5.2.1.2. |
csi-IM-ResourceSetList List of references to CSI-IM resources used for CSI measurement and reporting in a CSI-RS resource set. Contains up to maxNrofCSI-IM-ResourceSetsPerConfig resource sets if resourceType is 'aperiodic' and 1 otherwise (see TS 38.214 [19], clause 5.2.1.2). |
csi-ResourceConfigId Used in CSI-ReportConfig to refer to an instance of CSI-ResourceConfig. |
csi-SSB-ResourceSetList List of references to SSB resources used for beam measurement and reporting in a CSI-RS resource set (see TS 38.214 [19], clause5.2.1.2). |
nzp-CSI-RS-ResourceSetList List of references to NZP CSI-RS resources used for CSI measurement and reporting in a CSI-RS resource set. Contains up to maxNrofNZP-CSI-RS-ResourceSetsPerConfig resource sets if resourceType is 'aperiodic' and 1 otherwise (see TS 38.214 [19], clause 5.2.1.2). |
resourceType Time domain behavior of resource configuration (see TS 38.214 [19], clause 5.2.1.2). It does not apply to resources provided in the csi-SSB-ResourceSetList. |
The IE CSI-ResourceConfigId is used to identify a CSI-ResourceConfig.
The IE CSI-ResourcePeriodicityAndOffset is used to configure a periodicity and a corresponding offset for periodic and semi-persistent CSI resources, and for periodic and semi-persistent reporting on PUCCH. both, the periodicity and the offset are given in number of slots. The periodicity value slots4 corresponds to 4 slots, value slots5 corresponds to 5 slots, and so on.
-- ASN1START -- TAG-CSI-RESOURCEPERIODICITYANDOFFSET-START CSI-ResourcePeriodicityAndOffset ::= CHOICE { slots4 INTEGER (0..3), slots5 INTEGER (0..4), slots8 INTEGER (0..7), slots10 INTEGER (0..9), slots16 INTEGER (0..15), slots20 INTEGER (0..19), slots32 INTEGER (0..31), slots40 INTEGER (0..39), slots64 INTEGER (0..63), slots80 INTEGER (0..79), slots160 INTEGER (0..159), slots320 INTEGER (0..319), slots640 INTEGER (0..639) } -- TAG-CSI-RESOURCEPERIODICITYANDOFFSET-STOP -- ASN1STOP
The IE CSI-RS-ResourceConfigMobility is used to configure CSI-RS based RRM measurements.
-- ASN1START -- TAG-CSI-RS-RESOURCECONFIGMOBILITY-START CSI-RS-ResourceConfigMobility ::= SEQUENCE {subcarrierSpacingSubcarrier spacing of CSI-RS. Only the values 15, 30 kHz or 60 kHz (FR1), and 60 or 120 kHz (FR2) are applicable.SubcarrierSpacing,csi-RS-CellList-MobilityList of cells for CSI-RS based RRM measurements.SEQUENCE (SIZE (1..maxNrofCSI-RS-CellsRRM)) OF CSI-RS-CellMobility, ..., [[refServCellIndexIndicates the serving cell providing the timing reference for CSI-RS resources without associatedSSB. The field may be present only if there is at least one CSI-RS resource configured without associatedSSB. If this field is absent, the UE shall use the timing of the PCell for measurements on the CSI-RS resources without associatedSSB. The CSI-RS resources and the serving cell indicated by refServCellIndex for timing reference should be located in the same band.ServCellIndex OPTIONAL -- Need S ]] } CSI-RS-CellMobility ::= SEQUENCE { cellId PhysCellId, csi-rs-MeasurementBW SEQUENCE {nrofPRBsAllowed size of the measurement BW in PRBs.See TS 38.211[16], clause 7.4.1.ENUMERATED { size24, size48, size96, size192, size264},startPRBStarting PRB index of the measurement bandwidth.See TS 38.211[16], clause 7.4.1.INTEGER(0..2169) },densityFrequency domain density for the 1-port CSI-RS for L3 mobility.See TS 38.211[16], clause 7.4.1.ENUMERATED {d1,d3} OPTIONAL, -- Need Rcsi-rs-ResourceList-MobilityList of CSI-RS resources for mobility. The maximum number of CSI-RS resources that can be configured permeasObjectNR depends on the configuration of associatedSSB (see TS 38.214 [19], clause 5.1.6.1.3).SEQUENCE (SIZE (1..maxNrofCSI-RS-ResourcesRRM)) OF CSI-RS-Resource-Mobility } CSI-RS-Resource-Mobility ::= SEQUENCE {csi-RS-IndexCSI-RS resource index associated to the CSI-RS resource to be measured (and used for reporting).CSI-RS-Index,slotConfigIndicates the CSI-RS periodicity (in milliseconds) and for each periodicity the offset (in number of slots). When subcarrierSpacing is set to kHz15, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 3/4/9/19/39 slots. When subcarrierSpacing is set to kHz30, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 7/9/19/39/79 slots. When subcarrierSpacing is set to kHz60, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 15/19/39/79/159 slots. When subcarrierSpacing is set kHz120, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 31/39/79/159/319 slots.CHOICE { ms4 INTEGER (0..31), ms5 INTEGER (0..39), ms10 INTEGER (0..79), ms20 INTEGER (0..159), ms40 INTEGER (0..319) },associatedSSBIf this field is present, the UE may base the timing of the CSI-RS resource indicated in CSI-RS-Resource-Mobility on the timing of the cell indicated by the cellId in the CSI-RS-CellMobility. In this case, the UE is not required to monitor that CSI-RS resource if the UE cannot detect the SS/PBCH block indicated by this associatedSSB and cellId. If this field is absent, the UE shall base the timing of the CSI-RS resource indicated in CSI-RS-Resource-Mobility on the timing of the serving cell indicated by refServCellIndex. In this case, the UE is required to measure the CSI-RS resource even if SS/PBCH block(s) with cellId in the CSI-RS-CellMobility are not detected. CSI-RS resources with and without associatedSSB may be configured in accordance with the rules in TS 38.214 [19], clause 5.1.6.1.3.SEQUENCE { ssb-Index SSB-Index,isQuasiColocatedIndicates that the CSI-RS resource is quasi co-located with the associated SS/PBCH block, see TS 38.214 [19], clause 5.1.6.1.3.BOOLEAN } OPTIONAL, -- Need RfrequencyDomainAllocationFrequency domain allocation within a physical resource block in accordance with TS 38.211 [16], clause 7.4.1.5.3 including table 7.4.1.5.2-1. The number of bits that may be set to one depend on the chosen row in that table.CHOICE { row1 BIT STRING (SIZE (4)), row2 BIT STRING (SIZE (12)) },firstOFDMSymbolInTimeDomainTime domain allocation within a physical resource block. The field indicates the first OFDM symbol in the PRB used for CSI-RS, see TS 38.211 [16], clause 7.4.1.5.3.INTEGER (0..13),sequenceGenerationConfigScrambling ID for CSI-RS (see TS 38.211 [16], clause 7.4.1.5.2).INTEGER (0..1023), ... } CSI-RS-Index ::= INTEGER (0..maxNrofCSI-RS-ResourcesRRM-1) -- TAG-CSI-RS-RESOURCECONFIGMOBILITY-STOP -- ASN1STOP
CSI-RS-CellMobility field descriptions |
---|
csi-rs-ResourceList-Mobility List of CSI-RS resources for mobility. The maximum number of CSI-RS resources that can be configured permeasObjectNR depends on the configuration of associatedSSB (see TS 38.214 [19], clause 5.1.6.1.3). |
density Frequency domain density for the 1-port CSI-RS for L3 mobility.See TS 38.211[16], clause 7.4.1. |
nrofPRBs Allowed size of the measurement BW in PRBs.See TS 38.211[16], clause 7.4.1. |
startPRB Starting PRB index of the measurement bandwidth.See TS 38.211[16], clause 7.4.1. |
CSI-RS-ResourceConfigMobility field descriptions |
---|
csi-RS-CellList-Mobility List of cells for CSI-RS based RRM measurements. |
refServCellIndex Indicates the serving cell providing the timing reference for CSI-RS resources without associatedSSB. The field may be present only if there is at least one CSI-RS resource configured without associatedSSB. If this field is absent, the UE shall use the timing of the PCell for measurements on the CSI-RS resources without associatedSSB. The CSI-RS resources and the serving cell indicated by refServCellIndex for timing reference should be located in the same band. |
subcarrierSpacing Subcarrier spacing of CSI-RS. Only the values 15, 30 kHz or 60 kHz (FR1), and 60 or 120 kHz (FR2) are applicable. |
CSI-RS-Resource-Mobility field descriptions |
---|
associatedSSB If this field is present, the UE may base the timing of the CSI-RS resource indicated in CSI-RS-Resource-Mobility on the timing of the cell indicated by the cellId in the CSI-RS-CellMobility. In this case, the UE is not required to monitor that CSI-RS resource if the UE cannot detect the SS/PBCH block indicated by this associatedSSB and cellId. If this field is absent, the UE shall base the timing of the CSI-RS resource indicated in CSI-RS-Resource-Mobility on the timing of the serving cell indicated by refServCellIndex. In this case, the UE is required to measure the CSI-RS resource even if SS/PBCH block(s) with cellId in the CSI-RS-CellMobility are not detected. CSI-RS resources with and without associatedSSB may be configured in accordance with the rules in TS 38.214 [19], clause 5.1.6.1.3. |
csi-RS-Index CSI-RS resource index associated to the CSI-RS resource to be measured (and used for reporting). |
firstOFDMSymbolInTimeDomain Time domain allocation within a physical resource block. The field indicates the first OFDM symbol in the PRB used for CSI-RS, see TS 38.211 [16], clause 7.4.1.5.3. |
frequencyDomainAllocation Frequency domain allocation within a physical resource block in accordance with TS 38.211 [16], clause 7.4.1.5.3 including table 7.4.1.5.2-1. The number of bits that may be set to one depend on the chosen row in that table. |
isQuasiColocated Indicates that the CSI-RS resource is quasi co-located with the associated SS/PBCH block, see TS 38.214 [19], clause 5.1.6.1.3. |
sequenceGenerationConfig Scrambling ID for CSI-RS (see TS 38.211 [16], clause 7.4.1.5.2). |
slotConfig Indicates the CSI-RS periodicity (in milliseconds) and for each periodicity the offset (in number of slots). When subcarrierSpacing is set to kHz15, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 3/4/9/19/39 slots. When subcarrierSpacing is set to kHz30, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 7/9/19/39/79 slots. When subcarrierSpacing is set to kHz60, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 15/19/39/79/159 slots. When subcarrierSpacing is set kHz120, the maximum offset values for periodicities ms4/ms5/ms10/ms20/ms40 are 31/39/79/159/319 slots. |
The IE CSI-RS-ResourceMapping is used to configure the resource element mapping of a CSI-RS resource in time- and frequency domain.
-- ASN1START -- TAG-CSI-RS-RESOURCEMAPPING-START CSI-RS-ResourceMapping ::= SEQUENCE {frequencyDomainAllocationFrequency domain allocation within a physical resource block in accordance with TS 38.211 [16], clause 7.4.1.5.3. The applicable row number in table 7.4.1.5.3-1 is determined by the frequencyDomainAllocation for rows 1, 2 and 4, and for other rows by matching the values in the column Ports, Density and CDMtype in table 7.4.1.5.3-1 with the values of nrofPorts, cdm-Type and density below and, when more than one row has the 3 values matching, by selecting the row where the column (k bar, l bar) in table 7.4.1.5.3-1 has indexes for k ranging from 0 to 2*n-1 where n is the number of bits set to 1 in frequencyDomainAllocation.CHOICE { row1 BIT STRING (SIZE (4)), row2 BIT STRING (SIZE (12)), row4 BIT STRING (SIZE (3)), other BIT STRING (SIZE (6)) },nrofPortsNumber of ports (see TS 38.214 [19], clause 5.2.2.3.1).ENUMERATED {p1,p2,p4,p8,p12,p16,p24,p32},firstOFDMSymbolInTimeDomainTime domain allocation within a physical resource block. The field indicates the first OFDM symbol in the PRB used for CSI-RS. See TS 38.211 [16], clause 7.4.1.5.3.INTEGER (0..13),firstOFDMSymbolInTimeDomain2Time domain allocation within a physical resource block. See TS 38.211 [16], clause 7.4.1.5.3.INTEGER (2..12) OPTIONAL, -- Need Rcdm-TypeCDM type (see TS 38.214 [19], clause 5.2.2.3.1).ENUMERATED {noCDM, fd-CDM2, cdm4-FD2-TD2, cdm8-FD2-TD4},densityDensity of CSI-RS resource measured in RE/port/PRB (see TS 38.211 [16], clause 7.4.1.5.3). Values 0.5 (dot5), 1 (one) and 3 (three) are allowed for X=1, values 0.5 (dot5) and 1 (one) are allowed for X=2, 16, 24 and 32, value 1 (one) is allowed for X=4, 8, 12. For density = 1/2, includes 1-bit indication for RB level comb offset indicating whether odd or even RBs are occupied by CSI-RS.CHOICE { dot5 ENUMERATED {evenPRBs, oddPRBs}, one NULL, three NULL, spare NULL },freqBandWideband or partial band CSI-RS, (see TS 38.214 [19], clause 5.2.2.3.1).CSI-FrequencyOccupation, ... } -- TAG-CSI-RS-RESOURCEMAPPING-STOP -- ASN1STOP
CSI-RS-ResourceMapping field descriptions |
---|
cdm-Type CDM type (see TS 38.214 [19], clause 5.2.2.3.1). |
density Density of CSI-RS resource measured in RE/port/PRB (see TS 38.211 [16], clause 7.4.1.5.3). Values 0.5 (dot5), 1 (one) and 3 (three) are allowed for X=1, values 0.5 (dot5) and 1 (one) are allowed for X=2, 16, 24 and 32, value 1 (one) is allowed for X=4, 8, 12. For density = 1/2, includes 1-bit indication for RB level comb offset indicating whether odd or even RBs are occupied by CSI-RS. |
firstOFDMSymbolInTimeDomain2 Time domain allocation within a physical resource block. See TS 38.211 [16], clause 7.4.1.5.3. |
firstOFDMSymbolInTimeDomain Time domain allocation within a physical resource block. The field indicates the first OFDM symbol in the PRB used for CSI-RS. See TS 38.211 [16], clause 7.4.1.5.3. |
freqBand Wideband or partial band CSI-RS, (see TS 38.214 [19], clause 5.2.2.3.1). |
frequencyDomainAllocation Frequency domain allocation within a physical resource block in accordance with TS 38.211 [16], clause 7.4.1.5.3. The applicable row number in table 7.4.1.5.3-1 is determined by the frequencyDomainAllocation for rows 1, 2 and 4, and for other rows by matching the values in the column Ports, Density and CDMtype in table 7.4.1.5.3-1 with the values of nrofPorts, cdm-Type and density below and, when more than one row has the 3 values matching, by selecting the row where the column (k bar, l bar) in table 7.4.1.5.3-1 has indexes for k ranging from 0 to 2*n-1 where n is the number of bits set to 1 in frequencyDomainAllocation. |
nrofPorts Number of ports (see TS 38.214 [19], clause 5.2.2.3.1). |
The CSI-SemiPersistentOnPUSCH-TriggerStateList IE is used to configure the UE with list of trigger states for semi-persistent reporting of channel state information on L1. See also TS 38.214 [19], clause 5.2.
-- ASN1START -- TAG-CSI-SEMIPERSISTENTONPUSCHTRIGGERSTATELIST-START CSI-SemiPersistentOnPUSCH-TriggerStateList ::= SEQUENCE(SIZE(1..maxNrOfSemiPersistentPUSCH-Triggers)) OF CSI-SemiPersistentOnPUSCH-TriggerState CSI-SemiPersistentOnPUSCH-TriggerState ::= SEQUENCE { associatedReportConfigInfo CSI-ReportConfigId, ... } -- TAG-CSI-SEMIPERSISTENTONPUSCHTRIGGERSTATELIST-STOP -- ASN1STOP
The IE CSI-SSB-ResourceSet is used to configure one SS/PBCH block resource set which refers to SS/PBCH as indicated in ServingCellConfigCommon.
-- ASN1START -- TAG-CSI-SSB-RESOURCESET-START CSI-SSB-ResourceSet ::= SEQUENCE { csi-SSB-ResourceSetId CSI-SSB-ResourceSetId, csi-SSB-ResourceList SEQUENCE (SIZE(1..maxNrofCSI-SSB-ResourcePerSet)) OF SSB-Index, ... } -- TAG-CSI-SSB-RESOURCESET-STOP -- ASN1STOP
The IE CSI-SSB-ResourceSetId is used to identify one SS/PBCH block resource set.
The IE DedicatedNAS-Message is used to transfer UE specific NAS layer information between the 5GC CN and the UE. The RRC layer is transparent for this information.
The IE DMRS-DownlinkConfig is used to configure downlink demodulation reference signals for PDSCH.
-- ASN1START -- TAG-DMRS-DOWNLINKCONFIG-START DMRS-DownlinkConfig ::= SEQUENCE {dmrs-TypeSelection of the DMRS type to be used for DL (see TS 38.211 [16], clause 7.4.1.1.1). If the field is absent, the UE uses DMRS type 1.ENUMERATED {type2} OPTIONAL, -- Need Sdmrs-AdditionalPositionPosition for additional DM-RS in DL, see Tables 7.4.1.1.2-3 and 7.4.1.1.2-4 in TS 38.211 [16]. If the field is absent, the UE applies the value pos2.See also clause 7.4.1.1.2 for additional constraints on how the network may set this field depending on the setting of other fields.ENUMERATED {pos0, pos1, pos3} OPTIONAL, -- Need SmaxLengthThe maximum number of OFDM symbols for DL front loaded DMRS. len1 corresponds to value 1. len2 corresponds to value 2. If the field is absent, the UE applies value len1. If set to len2, the UE determines the actual number of DM-RS symbols by the associated DCI. (see TS 38.211 [16], clause 7.4.1.1.2).ENUMERATED {len2} OPTIONAL, -- Need SscramblingID0DL DMRS scrambling initialization (see TS 38.211 [16], clause 7.4.1.1.1). When the field is absent the UE applies the value physCellId configured for this serving cell.INTEGER (0..65535) OPTIONAL, -- Need SscramblingID1DL DMRS scrambling initialization (see TS 38.211 [16], clause 7.4.1.1.1). When the field is absent the UE applies the value physCellId configured for this serving cell.INTEGER (0..65535) OPTIONAL, -- Need SphaseTrackingRSConfigures downlink PTRS. If the field is not configured, the UE assumes that downlink PTRS are absent. See TS 38.214 [19]clause 5.1.6.3.SetupRelease { PTRS-DownlinkConfig } OPTIONAL, -- Need M ... } -- TAG-DMRS-DOWNLINKCONFIG-STOP -- ASN1STOP
DMRS-DownlinkConfig field descriptions |
---|
dmrs-AdditionalPosition Position for additional DM-RS in DL, see Tables 7.4.1.1.2-3 and 7.4.1.1.2-4 in TS 38.211 [16]. If the field is absent, the UE applies the value pos2.See also clause 7.4.1.1.2 for additional constraints on how the network may set this field depending on the setting of other fields. |
dmrs-Type Selection of the DMRS type to be used for DL (see TS 38.211 [16], clause 7.4.1.1.1). If the field is absent, the UE uses DMRS type 1. |
maxLength The maximum number of OFDM symbols for DL front loaded DMRS. len1 corresponds to value 1. len2 corresponds to value 2. If the field is absent, the UE applies value len1. If set to len2, the UE determines the actual number of DM-RS symbols by the associated DCI. (see TS 38.211 [16], clause 7.4.1.1.2). |
phaseTrackingRS Configures downlink PTRS. If the field is not configured, the UE assumes that downlink PTRS are absent. See TS 38.214 [19]clause 5.1.6.3. |
scramblingID0 DL DMRS scrambling initialization (see TS 38.211 [16], clause 7.4.1.1.1). When the field is absent the UE applies the value physCellId configured for this serving cell. |
scramblingID1 DL DMRS scrambling initialization (see TS 38.211 [16], clause 7.4.1.1.1). When the field is absent the UE applies the value physCellId configured for this serving cell. |
The IE DMRS-UplinkConfig is used to configure uplink demodulation reference signals for PUSCH.
-- ASN1START -- TAG-DMRS-UPLINKCONFIG-START DMRS-UplinkConfig ::= SEQUENCE { dmrs-Type ENUMERATED {type2} OPTIONAL, -- Need S dmrs-AdditionalPosition ENUMERATED {pos0, pos1, pos3} OPTIONAL, -- Need S phaseTrackingRS SetupRelease { PTRS-UplinkConfig } OPTIONAL, -- Need M maxLength ENUMERATED {len2} OPTIONAL, -- Need S transformPrecodingDisabled SEQUENCE { scramblingID0 INTEGER (0..65535) OPTIONAL, -- Need S scramblingID1 INTEGER (0..65535) OPTIONAL, -- Need S ... } OPTIONAL, -- Need R transformPrecodingEnabled SEQUENCE { nPUSCH-Identity INTEGER(0..1007) OPTIONAL, -- Need S sequenceGroupHopping ENUMERATED {disabled} OPTIONAL, -- Need S sequenceHopping ENUMERATED {enabled} OPTIONAL, -- Need S ... } OPTIONAL, -- Need R ... } -- TAG-DMRS-UPLINKCONFIG-STOP -- ASN1STOP
The IE DownlinkConfigCommon provides common downlink parameters of a cell.
-- ASN1START -- TAG-DOWNLINKCONFIGCOMMON-START DownlinkConfigCommon ::= SEQUENCE {frequencyInfoDLBasic parameters of a downlink carrier and transmission thereon.FrequencyInfoDL OPTIONAL, -- Cond InterFreqHOAndServCellAddinitialDownlinkBWPThe initial downlink BWP configuration for a serving cell.The network configures the locationAndBandwidth so that the initial downlink BWP contains the entire CORESET#0 of this serving cell in the frequency domain.BWP-DownlinkCommon OPTIONAL, -- Cond ServCellAdd ... } -- TAG-DOWNLINKCONFIGCOMMON-STOP -- ASN1STOP
DMRS-UplinkConfig field descriptions |
---|
dmrs-AdditionalPosition Position for additional DM-RS in UL (see TS 38.211 [16], clause6.4.1.1.3). If the field is absent, the UE applies the value pos2. See also clause 6.4.1.1.3 for additional constraints on how the network may set this field depending on the setting of other fields. |
dmrs-Type Selection of the DMRS type to be used for UL (see TS 38.211 [16], clause 6.4.1.1.3) If the field is absent, the UE uses DMRS type 1. |
maxLength The maximum number of OFDM symbols for UL front loaded DMRS. len1 corresponds to value 1. len2 corresponds to value 2. If the field is absent, the UE applies value len1. If set to len2, the UE determines the actual number of DM-RS symbols by the associated DCI. (see TS 38.211 [16], clause 6.4.1.1.3). |
nPUSCH-Identity Parameter: N_ID^(PUSCH) for DFT-s-OFDM DMRS. If the value is absent or released, the UE uses the value Physical cell ID (physCellId). See TS 38.211 [16]. |
phaseTrackingRS Configures uplink PTRS (see TS 38.211 [16]). |
scramblingID0 UL DMRS scrambling initialization for CP-OFDM (see TS 38.211 [16], clause 6.4.1.1.1.1). When the field is absent the UE applies the value Physical cell ID (physCellId). |
scramblingID1 UL DMRS scrambling initialization for CP-OFDM. (see TS 38.211 [16], clause 6.4.1.1.1.1). When the field is absent the UE applies the value Physical cell ID (physCellId). |
sequenceGroupHopping For DMRS transmission with transform precoder the NW may configure group hopping by the cell-specific parameter groupHoppingEnabledTransformPrecoding in PUSCH-ConfigCommon. In this case, the NW may include this UE specific field to disable group hopping for PUSCH transmission except for Msg3, i.e., to override the configuration in PUSCH-ConfigCommon (see TS 38.211 [16]). If the field is absent, the UE uses the same hopping mode as for Msg3. |
sequenceHopping Determines if sequence hopping is enabled for DMRS transmission with transform precoderfor PUSCH transmission other than Msg3 (sequence hopping is always disabled for Msg3). If the field is absent, the UE uses the same hopping mode as for msg3. The network does not configure simultaneous group hopping and sequence hopping. See TS 38.211 [16], clause 6.4.1.1.1.2. |
transformPrecodingDisabled DMRS related parameters for Cyclic Prefix OFDM. |
transformPrecodingEnabled DMRS related parameters for DFT-s-OFDM (Transform Precoding). |
DownlinkConfigCommon field descriptions |
---|
frequencyInfoDL Basic parameters of a downlink carrier and transmission thereon. |
initialDownlinkBWP The initial downlink BWP configuration for a serving cell.The network configures the locationAndBandwidth so that the initial downlink BWP contains the entire CORESET#0 of this serving cell in the frequency domain. |
Conditional Presence | Explanation |
---|---|
InterFreqHOAndServCellAdd | This field is mandatory present for inter-frequency handover, and upon serving cell (PSCell/SCell) addition. Otherwise, the field is optionally present, Need M. |
ServCellAdd | This field is mandatory present upon serving cell addition (for PSCell and SCell) and upon handover from E-UTRA to NR. It is optionally present, Need M otherwise. |
The IE DownlinkConfigCommonSIB provides common downlink parameters of a cell.
-- ASN1START -- TAG-DOWNLINKCONFIGCOMMONSIB-START DownlinkConfigCommonSIB ::= SEQUENCE { frequencyInfoDL FrequencyInfoDL-SIB,initialDownlinkBWPThe initial downlink BWP configuration for a PCell. The network configures the locationAndBandwidth so that the initial downlink BWP contains the entire CORESET#0 of this serving cell in the frequency domain. The UE applies thelocationAndBandwidthupon reception of this field (e.g. to determine the frequency position of signals described in relation to this locationAndBandwidth) but it keeps CORESET#0 untilafter reception of RRCSetup/RRCResume/RRCReestablishment.BWP-DownlinkCommon,bcch-ConfigThe modification period related configuration.BCCH-Config,pcch-ConfigThe paging related configuration.PCCH-Config, ... } BCCH-Config ::= SEQUENCE {modificationPeriodCoeffActual modification period, expressed in number of radio frames m = modificationPeriodCoeff * defaultPagingCycle,see clause 5.2.2.2.2.n2 corresponds to value 2,n4corresponds to value 4, and so on.ENUMERATED {n2, n4, n8, n16}, ... } PCCH-Config ::= SEQUENCE {defaultPagingCycleDefault paging cycle, used to derive 'T' in TS 38.304 [20]. Value rf32 corresponds to 32 radio frames, valuerf64 corresponds to 64 radio frames and so on.PagingCycle,nAndPagingFrameOffsetUsed to derive the number of total paging frames in T (corresponding to parameter N in TS 38.304 [20]) and paging frame offset (corresponding to parameter PF_offset in TS 38.304 [20]). A value of oneSixteenthT corresponds to T / 16, a value of oneEighthT corresponds to T / 8, and so on. If pagingSearchSpace is set to zero and if SS/PBCH block and CORESET multiplexing pattern is 2 or 3 (as specified in TS 38.213 [13]): -for ssb-periodicityServingCell of 5 or 10ms, N can be set to one of {oneT, halfT, quarterT, oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 20ms, N can be set to one of {halfT, quarterT, oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 40ms, N can be set to one of {quarterT, oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 80ms, N can be set to one of {oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 160ms, N can be set to oneSixteenthT If pagingSearchSpace is set to zero and if SS/PBCH block and CORESET multiplexing pattern is 1 (as specified in TS 38.213 [13]), N can be set to one of {halfT, quarterT, oneEighthT, oneSixteenthT} If pagingSearchSpace is not set to zero, N can be configured to one of {oneT, halfT, quarterT, oneEighthT, oneSixteenthT}CHOICE { oneT NULL, halfT INTEGER (0..1), quarterT INTEGER (0..3), oneEighthT INTEGER (0..7), oneSixteenthT INTEGER (0..15) },nsNumber of paging occasions per paging frame.ENUMERATED {four, two, one},firstPDCCH-MonitoringOccasionOfPOPoints out the first PDCCH monitoring occasion for paging of each PO of the PF, see TS 38.304 [20].CHOICE { sCS15KHZoneT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..139), sCS30KHZoneT-SCS15KHZhalfT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..279), sCS60KHZoneT-SCS30KHZhalfT-SCS15KHZquarterT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..559), sCS120KHZoneT-SCS60KHZhalfT-SCS30KHZquarterT-SCS15KHZoneEighthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..1119), sCS120KHZhalfT-SCS60KHZquarterT-SCS30KHZoneEighthT-SCS15KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..2239), sCS120KHZquarterT-SCS60KHZoneEighthT-SCS30KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..4479), sCS120KHZoneEighthT-SCS60KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..8959), sCS120KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..17919) } OPTIONAL, -- Need R ... } -- TAG-DOWNLINKCONFIGCOMMONSIB-STOP -- ASN1STOP
DownlinkConfigCommonSIB field descriptions |
---|
frequencyInfoDL-SIB Basic parameters of a downlink carrier and transmission thereon. |
initialDownlinkBWP The initial downlink BWP configuration for a PCell. The network configures the locationAndBandwidth so that the initial downlink BWP contains the entire CORESET#0 of this serving cell in the frequency domain. The UE applies thelocationAndBandwidthupon reception of this field (e.g. to determine the frequency position of signals described in relation to this locationAndBandwidth) but it keeps CORESET#0 untilafter reception of RRCSetup/RRCResume/RRCReestablishment. |
bcch-Config The modification period related configuration. |
pcch-Config The paging related configuration. |
BCCH-Config field descriptions |
---|
modificationPeriodCoeff Actual modification period, expressed in number of radio frames m = modificationPeriodCoeff * defaultPagingCycle,see clause 5.2.2.2.2.n2 corresponds to value 2,n4corresponds to value 4, and so on. |
PCCH-Config field descriptions |
---|
defaultPagingCycle Default paging cycle, used to derive 'T' in TS 38.304 [20]. Value rf32 corresponds to 32 radio frames, valuerf64 corresponds to 64 radio frames and so on. |
firstPDCCH-MonitoringOccasionOfPO Points out the first PDCCH monitoring occasion for paging of each PO of the PF, see TS 38.304 [20]. |
nAndPagingFrameOffset Used to derive the number of total paging frames in T (corresponding to parameter N in TS 38.304 [20]) and paging frame offset (corresponding to parameter PF_offset in TS 38.304 [20]). A value of oneSixteenthT corresponds to T / 16, a value of oneEighthT corresponds to T / 8, and so on. If pagingSearchSpace is set to zero and if SS/PBCH block and CORESET multiplexing pattern is 2 or 3 (as specified in TS 38.213 [13]): -for ssb-periodicityServingCell of 5 or 10ms, N can be set to one of {oneT, halfT, quarterT, oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 20ms, N can be set to one of {halfT, quarterT, oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 40ms, N can be set to one of {quarterT, oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 80ms, N can be set to one of {oneEighthT, oneSixteenthT} -for ssb-periodicityServingCell of 160ms, N can be set to oneSixteenthT If pagingSearchSpace is set to zero and if SS/PBCH block and CORESET multiplexing pattern is 1 (as specified in TS 38.213 [13]), N can be set to one of {halfT, quarterT, oneEighthT, oneSixteenthT} If pagingSearchSpace is not set to zero, N can be configured to one of {oneT, halfT, quarterT, oneEighthT, oneSixteenthT} |
ns Number of paging occasions per paging frame. |
The IE DownlinkPreemption is used to configure the UE to monitor PDCCH for the INT-RNTI (interruption).
-- ASN1START -- TAG-DOWNLINKPREEMPTION-START DownlinkPreemption ::= SEQUENCE {int-RNTIRNTI used for indication pre-emption in DL (see TS 38.213 [13], clause 10).RNTI-Value,timeFrequencySetSet selection for DL-preemption indication (see TS 38.213 [13], clause 11.2) The set determines how the UE interprets the DL preemption DCI payload.ENUMERATED {set0, set1},dci-PayloadSizeTotal length of the DCI payload scrambled with INT-RNTI (see TS 38.213 [13], clause 11.2).INTEGER (0..maxINT-DCI-PayloadSize),int-ConfigurationPerServingCellIndicates (per serving cell) the position of the 14 bit INT values inside the DCI payload (see TS 38.213 [13], clause 11.2).SEQUENCE (SIZE (1..maxNrofServingCells)) OF INT-ConfigurationPerServingCell, ... } INT-ConfigurationPerServingCell ::= SEQUENCE { servingCellId ServCellIndex,positionInDCIStarting position (in number of bit) of the 14 bit INT value applicable for this serving cell (servingCellId) within the DCI payload (see TS 38.213 [13], clause 11.2). Must be multiples of 14 (bit).INTEGER (0..maxINT-DCI-PayloadSize-1) } -- TAG-DOWNLINKPREEMPTION-STOP -- ASN1STOP
DownlinkPreemption field descriptions |
---|
dci-PayloadSize Total length of the DCI payload scrambled with INT-RNTI (see TS 38.213 [13], clause 11.2). |
int-ConfigurationPerServingCell Indicates (per serving cell) the position of the 14 bit INT values inside the DCI payload (see TS 38.213 [13], clause 11.2). |
int-RNTI RNTI used for indication pre-emption in DL (see TS 38.213 [13], clause 10). |
timeFrequencySet Set selection for DL-preemption indication (see TS 38.213 [13], clause 11.2) The set determines how the UE interprets the DL preemption DCI payload. |
INT-ConfigurationPerServingCell field descriptions |
---|
positionInDCI Starting position (in number of bit) of the 14 bit INT value applicable for this serving cell (servingCellId) within the DCI payload (see TS 38.213 [13], clause 11.2). Must be multiples of 14 (bit). |
The IE DRB-Identity is used to identify a DRB used by a UE.
The IE DRX-Config is used to configure DRX related parameters.
-- ASN1START -- TAG-DRX-CONFIG-START DRX-Config ::= SEQUENCE { drx-onDurationTimer CHOICE { subMilliSeconds INTEGER (1..31), milliSeconds ENUMERATED { ms1, ms2, ms3, ms4, ms5, ms6, ms8, ms10, ms20, ms30, ms40, ms50, ms60, ms80, ms100, ms200, ms300, ms400, ms500, ms600, ms800, ms1000, ms1200, ms1600, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1 } }, drx-InactivityTimer ENUMERATED { ms0, ms1, ms2, ms3, ms4, ms5, ms6, ms8, ms10, ms20, ms30, ms40, ms50, ms60, ms80, ms100, ms200, ms300, ms500, ms750, ms1280, ms1920, ms2560, spare9, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1}, drx-HARQ-RTT-TimerDL INTEGER (0..56), drx-HARQ-RTT-TimerUL INTEGER (0..56), drx-RetransmissionTimerDL ENUMERATED { sl0, sl1, sl2, sl4, sl6, sl8, sl16, sl24, sl33, sl40, sl64, sl80, sl96, sl112, sl128, sl160, sl320, spare15, spare14, spare13, spare12, spare11, spare10, spare9, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1}, drx-RetransmissionTimerUL ENUMERATED { sl0, sl1, sl2, sl4, sl6, sl8, sl16, sl24, sl33, sl40, sl64, sl80, sl96, sl112, sl128, sl160, sl320, spare15, spare14, spare13, spare12, spare11, spare10, spare9, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1 }, drx-LongCycleStartOffset CHOICE { ms10 INTEGER(0..9), ms20 INTEGER(0..19), ms32 INTEGER(0..31), ms40 INTEGER(0..39), ms60 INTEGER(0..59), ms64 INTEGER(0..63), ms70 INTEGER(0..69), ms80 INTEGER(0..79), ms128 INTEGER(0..127), ms160 INTEGER(0..159), ms256 INTEGER(0..255), ms320 INTEGER(0..319), ms512 INTEGER(0..511), ms640 INTEGER(0..639), ms1024 INTEGER(0..1023), ms1280 INTEGER(0..1279), ms2048 INTEGER(0..2047), ms2560 INTEGER(0..2559), ms5120 INTEGER(0..5119), ms10240 INTEGER(0..10239) }, shortDRX SEQUENCE { drx-ShortCycle ENUMERATED { ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms10, ms14, ms16, ms20, ms30, ms32, ms35, ms40, ms64, ms80, ms128, ms160, ms256, ms320, ms512, ms640, spare9, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1 }, drx-ShortCycleTimer INTEGER (1..16) } OPTIONAL, -- Need R drx-SlotOffset INTEGER (0..31) } -- TAG-DRX-CONFIG-STOP -- ASN1STOP
The IE FilterCoefficient specifies the measurement filtering coefficient. Value fc0 corresponds to k = 0, fc1 corresponds to k = 1, and so on.
DRX-Config field descriptions |
---|
drx-HARQ-RTT-TimerDL Value in number of symbols of the BWP where the transport block was received. |
drx-HARQ-RTT-TimerUL Value in number of symbols of the BWP where the transport block was transmitted. |
drx-InactivityTimer Value in multiple integers of 1ms. ms0 corresponds to 0, ms1 corresponds to 1ms, ms2 corresponds to 2ms, and so on. |
drx-LongCycleStartOffset drx-LongCycle in ms and drx-StartOffset in multiples of 1ms. If drx-ShortCycle is configured, the value of drx-LongCycle shall be a multiple of the drx-ShortCycle value. |
drx-onDurationTimer Value in multiples of 1/32 ms (subMilliSeconds) or in ms (milliSecond). For the latter, valuems1 corresponds to 1ms, valuems2 corresponds to 2ms, and so on. |
drx-RetransmissionTimerDL Value in number of slot lengths of the BWP where the transport block was received. valuesl0 corresponds to 0 slots, sl1 corresponds to 1 slot, sl2 corresponds to 2 slots, and so on. |
drx-RetransmissionTimerUL Value in number of slot lengths of the BWP where the transport block was transmitted. sl0 corresponds to 0 slots, sl1 corresponds to 1 slot, sl2 corresponds to 2 slots, and so on. |
drx-ShortCycleTimer Value in multiples of drx-ShortCycle. A value of 1 corresponds to drx-ShortCycle, a value of 2 corresponds to 2 * drx-ShortCycle and so on. |
drx-ShortCycle Value in ms. ms1 corresponds to 1ms, ms2 corresponds to 2ms, and so on. |
drx-SlotOffset Value in 1/32 ms. Value 0 corresponds to 0ms, value 1 corresponds to 1/32ms, value 2 corresponds to 2/32ms, and so on. |
The IE FreqBandIndicatorNR is used to convey an NR frequency band number as defined in TS 38.101-1 [15] and TS 38.101-2 [39].
The IE FrequencyInfoDL provides basic parameters of a downlink carrier and transmission thereon.
-- ASN1START -- TAG-FREQUENCYINFODL-START FrequencyInfoDL ::= SEQUENCE {absoluteFrequencySSBFrequency of the SSB to be used for this serving cell. SSB related parameters (e.g. SSB index) provided for a serving cell refer to this SSB frequency unless mentioned otherwise. The cell-defining SSB of the PCell is always on the sync raster. Frequencies are considered to be on the sync raster if they are also identifiable with a GSCN value (see TS 38.101-1 [15]). If the field is absent, the SSB related parameters should be absent, e.g. ssb-PositionsInBurst, ssb-periodicityServingCell and subcarrierSpacing in ServingCellConfigCommon IE. If the field is absent, the UE obtains timing reference from the SpCell. This is only supported in case the SCell is in the same frequency band as the SpCell.ARFCN-ValueNR OPTIONAL, -- Cond SpCellAddfrequencyBandListList containing only one frequency band to which this carrier(s) belongs. Multiple values are not supported.MultiFrequencyBandListNR,absoluteFrequencyPointAAbsolute frequency position of the reference resource block (Common RB 0). Its lowest subcarrier is also known as Point A (see TS 38.211 [16], clause 4.4.4.2). Note that the lower edge of the actual carrier is not defined by this field but rather in the scs-SpecificCarrierList.ARFCN-ValueNR,scs-SpecificCarrierListA set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A. The network configures a scs-SpecificCarrier at least for each numerology (SCS) that is used e.g. in a BWP (see TS 38.211 [16], clause 5.3).SEQUENCE (SIZE (1..maxSCSs)) OF SCS-SpecificCarrier, ... } -- TAG-FREQUENCYINFODL-STOP -- ASN1STOP
FrequencyInfoDL field descriptions |
---|
absoluteFrequencyPointA Absolute frequency position of the reference resource block (Common RB 0). Its lowest subcarrier is also known as Point A (see TS 38.211 [16], clause 4.4.4.2). Note that the lower edge of the actual carrier is not defined by this field but rather in the scs-SpecificCarrierList. |
absoluteFrequencySSB Frequency of the SSB to be used for this serving cell. SSB related parameters (e.g. SSB index) provided for a serving cell refer to this SSB frequency unless mentioned otherwise. The cell-defining SSB of the PCell is always on the sync raster. Frequencies are considered to be on the sync raster if they are also identifiable with a GSCN value (see TS 38.101-1 [15]). If the field is absent, the SSB related parameters should be absent, e.g. ssb-PositionsInBurst, ssb-periodicityServingCell and subcarrierSpacing in ServingCellConfigCommon IE. If the field is absent, the UE obtains timing reference from the SpCell. This is only supported in case the SCell is in the same frequency band as the SpCell. |
frequencyBandList List containing only one frequency band to which this carrier(s) belongs. Multiple values are not supported. |
scs-SpecificCarrierList A set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A. The network configures a scs-SpecificCarrier at least for each numerology (SCS) that is used e.g. in a BWP (see TS 38.211 [16], clause 5.3). |
Conditional Presence | Explanation |
---|---|
SpCellAdd | The field is mandatory present if this FrequencyInfoDL is for SpCell. Otherwise the field is optionally present, Need S. |
The IE FrequencyInfoDL-SIB provides basic parameters of a downlink carrier and transmission thereon.
-- ASN1START -- TAG-FREQUENCYINFODL-SIB-START FrequencyInfoDL-SIB ::= SEQUENCE {frequencyBandListList of one or multiple frequency bands to which this carrier(s) belongs.MultiFrequencyBandListNR-SIB,offsetToPointARepresents the offset to Point A as defined in TS 38.211 [16], clause 4.4.4.2.INTEGER (0..2199),scs-SpecificCarrierListA set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A (see TS 38.211 [16], clause 5.3). The network configures this for all SCSs that are used in DL BWPsin this serving cell.SEQUENCE (SIZE (1..maxSCSs)) OF SCS-SpecificCarrier } -- TAG-FREQUENCYINFODL-SIB-STOP -- ASN1STOP
FrequencyInfoDL-SIB field descriptions |
---|
offsetToPointA Represents the offset to Point A as defined in TS 38.211 [16], clause 4.4.4.2. |
frequencyBandList List of one or multiple frequency bands to which this carrier(s) belongs. |
scs-SpecificCarrierList A set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A (see TS 38.211 [16], clause 5.3). The network configures this for all SCSs that are used in DL BWPsin this serving cell. |
The IE FrequencyInfoUL provides basic parameters of an uplink carrier and transmission thereon.
-- ASN1START -- TAG-FREQUENCYINFOUL-START FrequencyInfoUL ::= SEQUENCE {frequencyBandListList containing only one frequency band to which this carrier(s) belongs. Multiple values are not supported.MultiFrequencyBandListNR OPTIONAL, -- Cond FDD-OrSULabsoluteFrequencyPointAAbsolute frequency of the reference resource block (Common RB 0). Its lowest subcarrier is also known as Point A. Note that the lower edge of the actual carrier is not defined by this field but rather in the scs-SpecificCarrierList (see TS 38.211 [16], clause 4.4.4.2).ARFCN-ValueNR OPTIONAL, -- Cond FDD-OrSULscs-SpecificCarrierListA set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A. The network configures a scs-SpecificCarrier at least for each numerology (SCS) that is used e.g. in a BWP (see TS 38.211 [16], clause 5.3).SEQUENCE (SIZE (1..maxSCSs)) OF SCS-SpecificCarrier,additionalSpectrumEmissionThe additional spectrum emission requirements to be applied by the UE on this uplink. If the field is absent, the UE uses value 0 for the additionalSpectrumEmission(see TS 38.101-1 [15], table 6.2.3.1-1A, and TS 38.101-2 [39], table 6.2.3.1-2).AdditionalSpectrumEmission OPTIONAL, -- Need Sp-MaxMaximum transmit power allowed in this serving cell. The maximum transmit power that the UE may use on this serving cell may be additionally limited by p-NR-FR1 (configured for the cell group) and by p-UE-FR1 (configured total for all serving cells operating on FR1). If absent, the UE applies the maximum power according to TS 38.101-1 [15]in case of an FR1 cell or TS 38.101-2 [39] in case of an FR2 cell.In this release of the specification, if p-Max is present on a carrier frequency in FR2, the UE shall ignore the field and applies the maximum power according to TS 38.101-2 [39]. Value in dBm.P-Max OPTIONAL, -- Need SfrequencyShift7p5khzEnable the NR UL transmission with a 7.5 kHz shift to the LTE raster. If the field is absent, the frequency shift is disabled.ENUMERATED {true} OPTIONAL, -- Cond FDD-TDD-OrSUL-Optional ... } -- TAG-FREQUENCYINFOUL-STOP -- ASN1STOP
FrequencyInfoUL field descriptions |
---|
absoluteFrequencyPointA Absolute frequency of the reference resource block (Common RB 0). Its lowest subcarrier is also known as Point A. Note that the lower edge of the actual carrier is not defined by this field but rather in the scs-SpecificCarrierList (see TS 38.211 [16], clause 4.4.4.2). |
additionalSpectrumEmission The additional spectrum emission requirements to be applied by the UE on this uplink. If the field is absent, the UE uses value 0 for the additionalSpectrumEmission(see TS 38.101-1 [15], table 6.2.3.1-1A, and TS 38.101-2 [39], table 6.2.3.1-2). |
frequencyBandList List containing only one frequency band to which this carrier(s) belongs. Multiple values are not supported. |
frequencyShift7p5khz Enable the NR UL transmission with a 7.5 kHz shift to the LTE raster. If the field is absent, the frequency shift is disabled. |
p-Max Maximum transmit power allowed in this serving cell. The maximum transmit power that the UE may use on this serving cell may be additionally limited by p-NR-FR1 (configured for the cell group) and by p-UE-FR1 (configured total for all serving cells operating on FR1). If absent, the UE applies the maximum power according to TS 38.101-1 [15]in case of an FR1 cell or TS 38.101-2 [39] in case of an FR2 cell.In this release of the specification, if p-Max is present on a carrier frequency in FR2, the UE shall ignore the field and applies the maximum power according to TS 38.101-2 [39]. Value in dBm. |
scs-SpecificCarrierList A set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A. The network configures a scs-SpecificCarrier at least for each numerology (SCS) that is used e.g. in a BWP (see TS 38.211 [16], clause 5.3). |
Conditional Presence | Explanation |
---|---|
FDD-OrSUL | The field is mandatory present if this FrequencyInfoUL is for the paired UL for a DL (defined in a FrequencyInfoDL) or if this FrequencyInfoUL is for a supplementary uplink (SUL). It is absent, Need R, otherwise (if this FrequencyInfoUL is for an unpaired UL (TDD). |
FDD-TDD-OrSUL-Optional | The field is optionally present, Need R, if this FrequencyInfoUL is for the paired UL for a DL (defined in a FrequencyInfoDL), or if this FrequencyInfoUL is for an unpaired UL (TDD) in certain bands (as defined in clause 5.4.2.1 of TS 38.101-1 and in clause 5.4.2.1 of TS 38.104 [12]), or if this FrequencyInfoUL is for a supplementary uplink (SUL). It is absent, Need R, otherwise. |
The IE FrequencyInfoUL-SIB provides basic parameters of an uplink carrier and transmission thereon.
-- ASN1START -- TAG-FREQUENCYINFOUL-SIB-START FrequencyInfoUL-SIB ::= SEQUENCE {frequencyBandListProvides the frequency band indicator and a list of additionalPmax and additionalSpectrumEmission values as defined in TS 38.101-1 [15], table 6.2.3.1-1, and TS 38.101-2 [39], table 6.2.3.1-2. The UE shall apply the first listed band which it supports in the frequencyBandList field.MultiFrequencyBandListNR-SIB OPTIONAL, -- Cond FDD-OrSULabsoluteFrequencyPointAAbsolute frequency of the reference resource block (Common RB 0). Its lowest subcarrier is also known as Point A. Note that the lower edge of the actual carrier is not defined by this field but rather in the scs-SpecificCarrierList (see TS 38.211 [16], clause 4.4.4.2).ARFCN-ValueNR OPTIONAL, -- Cond FDD-OrSULscs-SpecificCarrierListA set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A (see TS 38.211 [16], clause 5.3).The network configures this for all SCSs that are used in UL BWPs configured in this serving cell.SEQUENCE (SIZE (1..maxSCSs)) OF SCS-SpecificCarrier,p-MaxValue in dBm applicable for the cell. If absent the UE applies the maximum power according to TS 38.101-1 [15]in case of an FR1 cell or TS 38.101-2 [39] in case of an FR2 cell. In this release of the specification, if p-Max is present on a carrier frequency in FR2, the UE shall ignore the field and applies the maximum power according to TS 38.101-2 [39].P-Max OPTIONAL, -- Need SfrequencyShift7p5khzEnable the NR UL transmission with a 7.5 kHz shift to the LTE raster. If the field is absent, the frequency shift is disabled.ENUMERATED {true} OPTIONAL, -- Cond FDD-TDD-OrSUL-Optional ... } -- TAG-FREQUENCYINFOUL-SIB-STOP -- ASN1STOP
FrequencyInfoUL-SIB field descriptions |
---|
absoluteFrequencyPointA Absolute frequency of the reference resource block (Common RB 0). Its lowest subcarrier is also known as Point A. Note that the lower edge of the actual carrier is not defined by this field but rather in the scs-SpecificCarrierList (see TS 38.211 [16], clause 4.4.4.2). |
frequencyBandList Provides the frequency band indicator and a list of additionalPmax and additionalSpectrumEmission values as defined in TS 38.101-1 [15], table 6.2.3.1-1, and TS 38.101-2 [39], table 6.2.3.1-2. The UE shall apply the first listed band which it supports in the frequencyBandList field. |
frequencyShift7p5khz Enable the NR UL transmission with a 7.5 kHz shift to the LTE raster. If the field is absent, the frequency shift is disabled. |
p-Max Value in dBm applicable for the cell. If absent the UE applies the maximum power according to TS 38.101-1 [15]in case of an FR1 cell or TS 38.101-2 [39] in case of an FR2 cell. In this release of the specification, if p-Max is present on a carrier frequency in FR2, the UE shall ignore the field and applies the maximum power according to TS 38.101-2 [39]. |
scs-SpecificCarrierList A set of carriers for different subcarrier spacings (numerologies). Defined in relation to Point A (see TS 38.211 [16], clause 5.3).The network configures this for all SCSs that are used in UL BWPs configured in this serving cell. |
Conditional Presence | Explanation |
---|---|
FDD-OrSUL | The field is mandatory present if this FrequencyInfoUL-SIB is for the paired UL for a DL (defined in a FrequencyInfoDL-SIB) or if this FrequencyInfoUL-SIB is for a supplementary uplink (SUL). It is absent otherwise (if this FrequencyInfoUL-SIB is for an unpaired UL (TDD). |
FDD-TDD-OrSUL-Optional | The field is optionally present, Need R, if this FrequencyInfoUL-SIB is for the paired UL for a DL (defined in a FrequencyInfoDL-SIB), or if this FrequencyInfoUL-SIB is for an unpaired UL (TDD) in certain bands (as defined in clause 5.4.2.1 of TS 38.101-1 and in clause 5.4.2.1 of TS 38.104 [12]), or if this FrequencyInfoUL-SIB is for a supplementary uplink (SUL). It is absent otherwise. |
The IE Hysteresis is a parameter used within the entry and leave condition of an event triggered reporting condition. The actual value is field value * 0.5 dB.
The IE I-RNTI-Value is used to identify the suspended UE context of a UE in RRC_INACTIVE.
The IE LocationMeasurementInfo defines the information sent by the UE to the network to assist with the configuration of measurement gaps for location related measurements.
-- ASN1START -- TAG-LOCATIONMEASUREMENTINFO-START LocationMeasurementInfo ::= CHOICE { eutra-RSTD EUTRA-RSTD-InfoList, ..., eutra-FineTimingDetection NULL } EUTRA-RSTD-InfoList ::= SEQUENCE (SIZE (1..maxInterRAT-RSTD-Freq)) OF EUTRA-RSTD-Info EUTRA-RSTD-Info ::= SEQUENCE {carrierFreqThe EARFCN value of the carrier received from upper layers for which the UE needs to perform the inter-RAT RSTD measurements.ARFCN-ValueEUTRA,measPRS-OffsetIndicates the requested gap offset for performing RSTD measurements towards E-UTRA. It is the smallest subframe offset from the beginning of subframe 0 of SFN=0 of the serving cell of the requested gap for measuring PRS positioning occasions in the carrier frequency carrierFreq for which the UE needs to perform the inter-RAT RSTD measurements. The PRS positioning occasion information is received from upper layers. The value of measPRS-Offset is obtained by mapping the starting subframe of the PRS positioning occasion in the measured cell onto the corresponding subframe in the serving cell and is calculated as the serving cell's number of subframes from SFN=0 mod 40. The UE shall take into account any additional time required by the UE to start PRS measurements on the other carrier when it does this mapping for determining the measPRS-Offset. NOTE: Figure 6.2.2-1 in TS 36.331[10] illustrates the measPRS-Offset field.INTEGER (0..39), ... } -- TAG-LOCATIONMEASUREMENTINFO-STOP -- ASN1STOP
LocationMeasurementInfo field descriptions |
---|
carrierFreq The EARFCN value of the carrier received from upper layers for which the UE needs to perform the inter-RAT RSTD measurements. |
measPRS-Offset Indicates the requested gap offset for performing RSTD measurements towards E-UTRA. It is the smallest subframe offset from the beginning of subframe 0 of SFN=0 of the serving cell of the requested gap for measuring PRS positioning occasions in the carrier frequency carrierFreq for which the UE needs to perform the inter-RAT RSTD measurements. The PRS positioning occasion information is received from upper layers. The value of measPRS-Offset is obtained by mapping the starting subframe of the PRS positioning occasion in the measured cell onto the corresponding subframe in the serving cell and is calculated as the serving cell's number of subframes from SFN=0 mod 40. The UE shall take into account any additional time required by the UE to start PRS measurements on the other carrier when it does this mapping for determining the measPRS-Offset. NOTE: Figure 6.2.2-1 in TS 36.331[10] illustrates the measPRS-Offset field. |
The IE LogicalChannelConfig is used to configure the logical channel parameters.
-- ASN1START -- TAG-LOGICALCHANNELCONFIG-START LogicalChannelConfig ::= SEQUENCE { ul-SpecificParameters SEQUENCE {priorityLogical channel priority, as specified in TS 38.321 [3].INTEGER (1..16),prioritisedBitRateValue in kiloBytes/s. ValuekBps0 corresponds to 0 kiloBytes/s, valuekBps8 corresponds to 8 kiloBytes/s, valuekBps16 corresponds to 16 kiloBytes/s, and so on. For SRBs, the value can only be set to infinity.ENUMERATED {kBps0, kBps8, kBps16, kBps32, kBps64, kBps128, kBps256, kBps512, kBps1024, kBps2048, kBps4096, kBps8192, kBps16384, kBps32768, kBps65536, infinity},bucketSizeDurationValue in ms. ms5 corresponds to 5ms, value ms10 corresponds to 10ms, and so on.ENUMERATED {ms5, ms10, ms20, ms50, ms100, ms150, ms300, ms500, ms1000, spare7, spare6, spare5, spare4, spare3,spare2, spare1},allowedServingCellsIf present, UL MAC SDUs from this logical channel can only be mapped to the serving cells indicated in this list. Otherwise, UL MAC SDUs from this logical channel can be mapped to any configured serving cell of this cell group. Corresponds to 'allowedServingCells' in TS 38.321 [3].SEQUENCE (SIZE (1..maxNrofServingCells-1)) OF ServCellIndex OPTIONAL, -- PDCP-CADuplicationallowedSCS-ListIf present, UL MAC SDUs from this logical channel can only be mapped to the indicated numerology. Otherwise, UL MAC SDUs from this logical channel can be mapped to any configured numerology. Only the values 15/30/60 kHz (for FR1) and 60/120 kHz (for FR2) are applicable. Corresponds to 'allowedSCS-List' as specified in TS 38.321 [3].SEQUENCE (SIZE (1..maxSCSs)) OF SubcarrierSpacing OPTIONAL, -- Need RmaxPUSCH-DurationIf present, UL MAC SDUs from this logical channel can only be transmitted using uplink grants that result in a PUSCH duration shorter than or equal to the duration indicated by this field. Otherwise, UL MAC SDUs from this logical channel can be transmitted using an uplink grant resulting in any PUSCH duration. Corresponds to "maxPUSCH-Duration" in TS 38.321 [3]. The PUSCH duration is calculated based on the same length of all symbols, and the shortest length applies if the symbol lengths are different.ENUMERATED {ms0p02, ms0p04, ms0p0625, ms0p125, ms0p25, ms0p5, spare2, spare1} OPTIONAL, -- Need RconfiguredGrantType1AllowedIf present, or if the capability lcp-Restriction as specified in TS 38.306 [26] is not supported, UL MAC SDUs from this logical channel can be transmitted on a configured grant type 1. Otherwise, UL MAC SDUs from this logical channel cannot be transmitted on a configured grant type 1. Corresponds to 'configuredGrantType1Allowed' in TS 38.321 [3].ENUMERATED {true} OPTIONAL, -- Need RlogicalChannelGroupID of the logical channel group, as specified in TS 38.321 [3], which the logical channel belongs to.INTEGER (0..maxLCG-ID) OPTIONAL, -- Need R schedulingRequestID SchedulingRequestId OPTIONAL, -- Need RlogicalChannelSR-MaskControls SR triggering when a configured uplink grant of type1 or type2 is configured. trueindicates that SR masking is configured for this logical channelas specified in TS 38.321 [3].BOOLEAN,logicalChannelSR-DelayTimerAppliedIndicates whether to apply the delay timer for SR transmission for this logical channel. Set to falseif logicalChannelSR-DelayTimer is not included in BSR-Config.BOOLEAN, ...,bitRateQueryProhibitTimerThe timer is used for bit rate recommendation query in TS 38.321 [3], in seconds. Value s0 means 0s, s0dot4 means 0.4s and so on.ENUMERATED { s0, s0dot4, s0dot8, s1dot6, s3, s6, s12,s30} OPTIONAL -- Need R } OPTIONAL, -- Cond UL ... } -- TAG-LOGICALCHANNELCONFIG-STOP -- ASN1STOP
LogicalChannelConfig field descriptions |
---|
allowedSCS-List If present, UL MAC SDUs from this logical channel can only be mapped to the indicated numerology. Otherwise, UL MAC SDUs from this logical channel can be mapped to any configured numerology. Only the values 15/30/60 kHz (for FR1) and 60/120 kHz (for FR2) are applicable. Corresponds to 'allowedSCS-List' as specified in TS 38.321 [3]. |
allowedServingCells If present, UL MAC SDUs from this logical channel can only be mapped to the serving cells indicated in this list. Otherwise, UL MAC SDUs from this logical channel can be mapped to any configured serving cell of this cell group. Corresponds to 'allowedServingCells' in TS 38.321 [3]. |
bitRateQueryProhibitTimer The timer is used for bit rate recommendation query in TS 38.321 [3], in seconds. Value s0 means 0s, s0dot4 means 0.4s and so on. |
bucketSizeDuration Value in ms. ms5 corresponds to 5ms, value ms10 corresponds to 10ms, and so on. |
configuredGrantType1Allowed If present, or if the capability lcp-Restriction as specified in TS 38.306 [26] is not supported, UL MAC SDUs from this logical channel can be transmitted on a configured grant type 1. Otherwise, UL MAC SDUs from this logical channel cannot be transmitted on a configured grant type 1. Corresponds to 'configuredGrantType1Allowed' in TS 38.321 [3]. |
logicalChannelGroup ID of the logical channel group, as specified in TS 38.321 [3], which the logical channel belongs to. |
logicalChannelSR-Mask Controls SR triggering when a configured uplink grant of type1 or type2 is configured. trueindicates that SR masking is configured for this logical channelas specified in TS 38.321 [3]. |
logicalChannelSR-DelayTimerApplied Indicates whether to apply the delay timer for SR transmission for this logical channel. Set to falseif logicalChannelSR-DelayTimer is not included in BSR-Config. |
maxPUSCH-Duration If present, UL MAC SDUs from this logical channel can only be transmitted using uplink grants that result in a PUSCH duration shorter than or equal to the duration indicated by this field. Otherwise, UL MAC SDUs from this logical channel can be transmitted using an uplink grant resulting in any PUSCH duration. Corresponds to "maxPUSCH-Duration" in TS 38.321 [3]. The PUSCH duration is calculated based on the same length of all symbols, and the shortest length applies if the symbol lengths are different. |
priority Logical channel priority, as specified in TS 38.321 [3]. |
prioritisedBitRate Value in kiloBytes/s. ValuekBps0 corresponds to 0 kiloBytes/s, valuekBps8 corresponds to 8 kiloBytes/s, valuekBps16 corresponds to 16 kiloBytes/s, and so on. For SRBs, the value can only be set to infinity. |
schedulingRequestId If present, it indicates the scheduling request configuration applicable for this logical channel, as specified in TS 38.321 [3]. |
Conditional Presence | Explanation |
---|---|
PDCP-CADuplication | The field is mandatory present if the DRB/SRB associated with this logical channelis configured with PDCP CA duplication in UL (i.e. the PDCP entity is associated with multiple RLC entities belonging to the same cell group). Otherwise the field is optionally present, need R. |
UL | The field is mandatory present for a logical channel with uplink if it serves DRB. It is optionally present, Need R, for a logical channel with uplink if it serves an SRB. Otherwise it is absent. |
The IE LogicalChannelIdentity is used to identify one logical channel (LogicalChannelConfig) and the corresponding RLC bearer (RLC-BearerConfig).
The IE MAC-CellGroupConfig is used to configure MAC parameters for a cell group, including DRX.
-- ASN1START -- TAG-MAC-CELLGROUPCONFIG-START MAC-CellGroupConfig ::= SEQUENCE {drx-ConfigUsed to configure DRX as specified in TS 38.321 [3].SetupRelease { DRX-Config } OPTIONAL, -- Need M schedulingRequestConfig SchedulingRequestConfig OPTIONAL, -- Need M bsr-Config BSR-Config OPTIONAL, -- Need M tag-Config TAG-Config OPTIONAL, -- Need M phr-Config SetupRelease { PHR-Config } OPTIONAL, -- Need MskipUplinkTxDynamicIf set to true, the UE skips UL transmissions as described in TS 38.321 [3].BOOLEAN, ..., [[csi-MaskIf set to true, the UE limits CSI reports to the on-duration period of the DRX cycle, see TS 38.321 [3].BOOLEAN OPTIONAL, -- Need MdataInactivityTimerReleases the RRC connection upon data inactivity as specified in clause 5.3.8.5 and in TS 38.321 [3]. Value s1 corresponds to 1 second, values2 corresponds to 2 seconds, and so on.SetupRelease { DataInactivityTimer } OPTIONAL -- Cond MCG-Only ]] } DataInactivityTimer ::= ENUMERATED {s1, s2, s3, s5, s7, s10, s15, s20, s40, s50, s60, s80, s100, s120, s150, s180} -- TAG-MAC-CELLGROUPCONFIG-STOP -- ASN1STOP
MAC-CellGroupConfig field descriptions |
---|
csi-Mask If set to true, the UE limits CSI reports to the on-duration period of the DRX cycle, see TS 38.321 [3]. |
dataInactivityTimer Releases the RRC connection upon data inactivity as specified in clause 5.3.8.5 and in TS 38.321 [3]. Value s1 corresponds to 1 second, values2 corresponds to 2 seconds, and so on. |
drx-Config Used to configure DRX as specified in TS 38.321 [3]. |
skipUplinkTxDynamic If set to true, the UE skips UL transmissions as described in TS 38.321 [3]. |
Conditional Presence | Explanation |
---|---|
MCG-Only | This field is optionally present, Need M, for the MAC-CellGroupConfig of the MCG. It is absent otherwise. |
The IE MeasConfig specifies measurements to be performed by the UE,and covers intra-frequency, inter-frequency and inter-RAT mobility as well as configuration of measurement gaps.
-- ASN1START -- TAG-MEASCONFIG-START MeasConfig ::= SEQUENCE {measObjectToRemoveListList of measurement objects to remove.MeasObjectToRemoveList OPTIONAL, -- Need NmeasObjectToAddModListList of measurement objects to add and/or modify.MeasObjectToAddModList OPTIONAL, -- Need NreportConfigToRemoveListList of measurement reporting configurations to remove.ReportConfigToRemoveList OPTIONAL, -- Need NreportConfigToAddModListList of measurement reporting configurations to add and/or modify.ReportConfigToAddModList OPTIONAL, -- Need NmeasIdToRemoveListList of measurement identities to remove.MeasIdToRemoveList OPTIONAL, -- Need NmeasIdToAddModListList of measurement identities to add and/or modify.MeasIdToAddModList OPTIONAL, -- Need Ns-MeasureConfigThreshold for NR SpCell RSRP measurement controlling when the UE is required to perform measurements on non-serving cells. Choice of ssb-RSRP corresponds to cell RSRP based on SS/PBCH block and choice of csi-RSRP corresponds to cell RSRP of CSI-RS.CHOICE { ssb-RSRP RSRP-Range, csi-RSRP RSRP-Range } OPTIONAL, -- Need M quantityConfig QuantityConfig OPTIONAL, -- Need MmeasGapConfigUsed to setup and release measurement gaps in NR.MeasGapConfig OPTIONAL, -- Need MmeasGapSharingConfigSpecifies the measurement gap sharing schemeand controls setup/ release of measurement gap sharing.MeasGapSharingConfig OPTIONAL, -- Need M ... } MeasObjectToRemoveList ::= SEQUENCE (SIZE (1..maxNrofObjectId)) OF MeasObjectId MeasIdToRemoveList ::= SEQUENCE (SIZE (1..maxNrofMeasId)) OF MeasId ReportConfigToRemoveList ::= SEQUENCE (SIZE (1..maxReportConfigId)) OF ReportConfigId -- TAG-MEASCONFIG-STOP -- ASN1STOP
MeasConfig field descriptions |
---|
measGapConfig Used to setup and release measurement gaps in NR. |
measIdToAddModList List of measurement identities to add and/or modify. |
measIdToRemoveList List of measurement identities to remove. |
measObjectToAddModList List of measurement objects to add and/or modify. |
measObjectToRemoveList List of measurement objects to remove. |
reportConfigToAddModList List of measurement reporting configurations to add and/or modify. |
reportConfigToRemoveList List of measurement reporting configurations to remove. |
s-MeasureConfig Threshold for NR SpCell RSRP measurement controlling when the UE is required to perform measurements on non-serving cells. Choice of ssb-RSRP corresponds to cell RSRP based on SS/PBCH block and choice of csi-RSRP corresponds to cell RSRP of CSI-RS. |
measGapSharingConfig Specifies the measurement gap sharing schemeand controls setup/ release of measurement gap sharing. |
The IE MeasGapConfig specifies the measurement gap configuration and controls setup/release of measurement gaps.
-- ASN1START -- TAG-MEASGAPCONFIG-START MeasGapConfig ::= SEQUENCE {gapFR2Indicates measurement gap configuration applies to FR2 only. In (NG)EN-DC or NE-DC, gapFR2 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR2 gap). In NR-DC, gapFR2 can only be set up in the measConfig associated with MCG. gapFR2 cannot be configured together with gapUE. The applicability of the FR2 measurement gap is according to Table 9.1.2-2 and Table 9.1.2-3 in TS 38.133 [14].SetupRelease { GapConfig } OPTIONAL, -- Need M ..., [[gapFR1Indicates measurement gap configuration that applies to FR1 only. In (NG)EN-DC, gapFR1 cannot be set up by NR RRC (i.e. only LTE RRC can configure FR1 measurement gap). In NE-DC, gapFR1 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR1 gap). In NR-DC, gapFR1 can only be set up in the measConfig associated with MCG. gapFR1 can not be configured together with gapUE. The applicability of the FR1 measurement gap is according to Table 9.1.2-2 and Table 9.1.2-3 in TS 38.133 [14].SetupRelease { GapConfig } OPTIONAL, -- Need MgapUEIndicates measurement gap configuration that applies to all frequencies (FR1 and FR2). In (NG)EN-DC, gapUE cannot be set up by NR RRC (i.e. only LTE RRC can configure per UE measurement gap). In NE-DC, gapUE can only be set up by NR RRC (i.e. LTE RRC cannot configure per UE gap). In NR-DC, gapUE can only be set up in the measConfig associated with MCG. If gapUE is configured, then neither gapFR1 nor gapFR2 can be configured. The applicability of the per UE measurement gap is according to Table 9.1.2-2 and Table 9.1.2-3 in TS 38.133 [14].SetupRelease { GapConfig } OPTIONAL -- Need M ]] } GapConfig ::= SEQUENCE {gapOffsetValue gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp. The value range is from 0 to mgrp-1.INTEGER (0..159),mglValue mgl is the measurement gap length in ms of the measurement gap. The measurement gap length is according to in Table 9.1.2-1 in TS 38.133 [14]. Value ms1dot5 corresponds to 1.5ms, ms3 corresponds to 3ms and so on.ENUMERATED {ms1dot5, ms3, ms3dot5, ms4, ms5dot5, ms6},mgrpValue mgrp is measurement gap repetition period in (ms) of the measurement gap. The measurement gap repetition period is according to Table 9.1.2-1 in TS 38.133 [14].ENUMERATED {ms20, ms40, ms80, ms160},mgtaValue mgta is the measurement gap timing advance in ms. The applicability of the measurement gap timing advance is according to clause9.1.2 of TS 38.133 [14]. Value ms0 corresponds to 0 ms, ms0dot25 corresponds to 0.25ms and ms0dot5 corresponds to 0.5ms.For FR2, the network only configures 0 ms and 0.25ms.ENUMERATED {ms0, ms0dot25, ms0dot5}, ..., [[refServCellIndicatorIndicates the serving cell whose SFN and subframe are used for gap calculation for this gap pattern. Value pCell corresponds to the PCell, pSCell corresponds to the PSCell, and mcg-FR2 corresponds to a serving cell on FR2 frequency in MCG.ENUMERATED {pCell, pSCell, mcg-FR2} OPTIONAL -- Cond NEDCorNRDC ]] } -- TAG-MEASGAPCONFIG-STOP -- ASN1STOP
MeasGapConfig field descriptions |
---|
gapFR1 Indicates measurement gap configuration that applies to FR1 only. In (NG)EN-DC, gapFR1 cannot be set up by NR RRC (i.e. only LTE RRC can configure FR1 measurement gap). In NE-DC, gapFR1 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR1 gap). In NR-DC, gapFR1 can only be set up in the measConfig associated with MCG. gapFR1 can not be configured together with gapUE. The applicability of the FR1 measurement gap is according to Table 9.1.2-2 and Table 9.1.2-3 in TS 38.133 [14]. |
gapFR2 Indicates measurement gap configuration applies to FR2 only. In (NG)EN-DC or NE-DC, gapFR2 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR2 gap). In NR-DC, gapFR2 can only be set up in the measConfig associated with MCG. gapFR2 cannot be configured together with gapUE. The applicability of the FR2 measurement gap is according to Table 9.1.2-2 and Table 9.1.2-3 in TS 38.133 [14]. |
gapUE Indicates measurement gap configuration that applies to all frequencies (FR1 and FR2). In (NG)EN-DC, gapUE cannot be set up by NR RRC (i.e. only LTE RRC can configure per UE measurement gap). In NE-DC, gapUE can only be set up by NR RRC (i.e. LTE RRC cannot configure per UE gap). In NR-DC, gapUE can only be set up in the measConfig associated with MCG. If gapUE is configured, then neither gapFR1 nor gapFR2 can be configured. The applicability of the per UE measurement gap is according to Table 9.1.2-2 and Table 9.1.2-3 in TS 38.133 [14]. |
gapOffset Value gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp. The value range is from 0 to mgrp-1. |
mgl Value mgl is the measurement gap length in ms of the measurement gap. The measurement gap length is according to in Table 9.1.2-1 in TS 38.133 [14]. Value ms1dot5 corresponds to 1.5ms, ms3 corresponds to 3ms and so on. |
mgrp Value mgrp is measurement gap repetition period in (ms) of the measurement gap. The measurement gap repetition period is according to Table 9.1.2-1 in TS 38.133 [14]. |
mgta Value mgta is the measurement gap timing advance in ms. The applicability of the measurement gap timing advance is according to clause9.1.2 of TS 38.133 [14]. Value ms0 corresponds to 0 ms, ms0dot25 corresponds to 0.25ms and ms0dot5 corresponds to 0.5ms.For FR2, the network only configures 0 ms and 0.25ms. |
refServCellIndicator Indicates the serving cell whose SFN and subframe are used for gap calculation for this gap pattern. Value pCell corresponds to the PCell, pSCell corresponds to the PSCell, and mcg-FR2 corresponds to a serving cell on FR2 frequency in MCG. |
Conditional Presence | Explanation |
---|---|
NEDCorNRDC | This field is mandatory present when configuring and reconfiguring gap pattern to UE in NE-DC or NR-DC. Otherwise, it is absent, Need R. |
The IE MeasGapSharingConfig specifies the measurement gap sharing scheme and controls setup/ release of measurement gap sharing.
-- ASN1START -- TAG-MEASGAPSHARINGCONFIG-START MeasGapSharingConfig ::= SEQUENCE {gapSharingFR2Indicates the measurement gap sharing scheme that applies to the gap set for FR2 only. In (NG)EN-DC or NE-DC, gapSharingFR2 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR2 gap sharing). In NR-DC, gapSharingFR2 can only be set up by MCG in the measConfig associated with MCG. gapSharingFR2 cannot be configured together with gapSharingUE. For applicability of the different gap sharing schemes, see TS 38.133 [14]. Value scheme00 corresponds to scheme "00", value scheme01 corresponds to scheme "01", and so on.SetupRelease { MeasGapSharingScheme } OPTIONAL, -- Need M ..., [[gapSharingFR1Indicates the measurement gap sharing scheme that applies to the gap set for FR1 only. In (NG)EN-DC, gapSharingFR1 cannot be set up by NR RRC (i.e. only LTE RRC can configure FR1 gap sharing). In NE-DC, gapSharingFR1 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR1 gap sharing). In NR-DC, gapSharingFR1 can only be set up in the measConfig associated with MCG. gapSharingFR1 can not be configured together with gapSharingUE. For the applicability of the different gap sharing schemes, see TS 38.133 [14]. Value scheme00 corresponds to scheme "00", value scheme01 corresponds to scheme "01", and so on.SetupRelease { MeasGapSharingScheme } OPTIONAL, --Need MgapSharingUEIndicates the measurement gap sharing scheme that applies to the gap set per UE. In (NG)EN-DC, gapSharingUE cannot be set up by NR RRC (i.e. only LTE RRC can configure per UE gap sharing). In NE-DC, gapSharingUE can only be set up by NR RRC (i.e. LTE RRC cannot configure per UE gap sharing). In NR-DC, gapSharingUE can only be set up in the measConfig associated with MCG. If gapSharingUE is configured, then neither gapSharingFR1 nor gapSharingFR2 can be configured. For the applicability of the different gap sharing schemes, see TS 38.133 [14]. Value scheme00 corresponds to scheme "00", value scheme01 corresponds to scheme "01", and so on.SetupRelease { MeasGapSharingScheme } OPTIONAL --Need M ]] } MeasGapSharingScheme::= ENUMERATED {scheme00, scheme01, scheme10, scheme11} -- TAG-MEASGAPSHARINGCONFIG-STOP -- ASN1STOP
MeasGapSharingConfig field descriptions |
---|
gapSharingFR1 Indicates the measurement gap sharing scheme that applies to the gap set for FR1 only. In (NG)EN-DC, gapSharingFR1 cannot be set up by NR RRC (i.e. only LTE RRC can configure FR1 gap sharing). In NE-DC, gapSharingFR1 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR1 gap sharing). In NR-DC, gapSharingFR1 can only be set up in the measConfig associated with MCG. gapSharingFR1 can not be configured together with gapSharingUE. For the applicability of the different gap sharing schemes, see TS 38.133 [14]. Value scheme00 corresponds to scheme "00", value scheme01 corresponds to scheme "01", and so on. |
gapSharingFR2 Indicates the measurement gap sharing scheme that applies to the gap set for FR2 only. In (NG)EN-DC or NE-DC, gapSharingFR2 can only be set up by NR RRC (i.e. LTE RRC cannot configure FR2 gap sharing). In NR-DC, gapSharingFR2 can only be set up by MCG in the measConfig associated with MCG. gapSharingFR2 cannot be configured together with gapSharingUE. For applicability of the different gap sharing schemes, see TS 38.133 [14]. Value scheme00 corresponds to scheme "00", value scheme01 corresponds to scheme "01", and so on. |
gapSharingUE Indicates the measurement gap sharing scheme that applies to the gap set per UE. In (NG)EN-DC, gapSharingUE cannot be set up by NR RRC (i.e. only LTE RRC can configure per UE gap sharing). In NE-DC, gapSharingUE can only be set up by NR RRC (i.e. LTE RRC cannot configure per UE gap sharing). In NR-DC, gapSharingUE can only be set up in the measConfig associated with MCG. If gapSharingUE is configured, then neither gapSharingFR1 nor gapSharingFR2 can be configured. For the applicability of the different gap sharing schemes, see TS 38.133 [14]. Value scheme00 corresponds to scheme "00", value scheme01 corresponds to scheme "01", and so on. |
The IE MeasId is used to identify a measurement configuration, i.e., linking of a measurement object and a reporting configuration.
The IE MeasIdToAddModList concerns a list of measurement identities to add or modify, with for each entry the measId, the associated measObjectId and the associated reportConfigId.
-- ASN1START -- TAG-MEASIDTOADDMODLIST-START MeasIdToAddModList ::= SEQUENCE (SIZE (1..maxNrofMeasId)) OF MeasIdToAddMod MeasIdToAddMod ::= SEQUENCE { measId MeasId, measObjectId MeasObjectId, reportConfigId ReportConfigId } -- TAG-MEASIDTOADDMODLIST-STOP -- ASN1STOP
The IE MeasObjectEUTRA specifies information applicable for EUTRA cells.
-- ASN1START -- TAG-MEASOBJECTEUTRA-START MeasObjectEUTRA::= SEQUENCE {carrierFreqIdentifies EUTRA carrier frequency for which this configuration is valid. Network does not configure more than one MeasObjectEUTRA for the same physical frequency, regardless of the E-ARFCN used to indicate this.ARFCN-ValueEUTRA,allowedMeasBandwidthThe maximum allowed measurement bandwidth on a carrier frequency as defined by the parameter Transmission Bandwidth Configuration "NRB" TS 36.104 [33].EUTRA-AllowedMeasBandwidth,cellsToRemoveListEUTRANList of cells to remove from the cell list.EUTRA-CellIndexList OPTIONAL, -- Need NcellsToAddModListEUTRANList of cells to add/ modify in the cell list.SEQUENCE (SIZE (1..maxCellMeasEUTRA)) OF EUTRA-Cell OPTIONAL, -- Need NblackCellsToRemoveListEUTRANList of cells to remove from the black list of cells.EUTRA-CellIndexList OPTIONAL, -- Need NblackCellsToAddModListEUTRANList of cells to add/ modify in the black list of cells.SEQUENCE (SIZE (1..maxCellMeasEUTRA)) OF EUTRA-BlackCell OPTIONAL, -- Need Neutra-PresenceAntennaPort1When set to true, the UE may assume that at least two cell-specific antenna ports are used in all neighbouring cells.EUTRA-PresenceAntennaPort1,eutra-Q-OffsetRangeUsed to indicate a cell, or frequency specific offset to be applied when evaluating triggering conditions for measurement reporting. The value is in dB. Value dB-24 corresponds to -24 dB, valuedB-22 corresponds to -22 dB and so on.EUTRA-Q-OffsetRange OPTIONAL, -- Need RwidebandRSRQ-MeasIf set to true, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [40]. The network may set the field to trueif the measurement bandwidth indicated by allowedMeasBandwidth is 50 resource blocks or larger; otherwise the network sets this field to false.BOOLEAN, ... } EUTRA-CellIndexList ::= SEQUENCE (SIZE (1..maxCellMeasEUTRA)) OF EUTRA-CellIndex EUTRA-CellIndex ::= INTEGER (1..maxCellMeasEUTRA) EUTRA-Cell ::= SEQUENCE {cellIndexEUTRAEntry index in the cell list.EUTRA-CellIndex, physCellId EUTRA-PhysCellId,cellIndividualOffsetCell individual offset applicable to a specific cell. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.EUTRA-Q-OffsetRange } EUTRA-BlackCell ::= SEQUENCE {cellIndexEUTRAEntry index in the cell list.EUTRA-CellIndex, physCellIdRange EUTRA-PhysCellIdRange } -- TAG-MEASOBJECTEUTRA-STOP -- ASN1STOP
EUTRAN-BlackCell field descriptions |
---|
cellIndexEUTRA Entry index in the cell list. |
physicalCellIdRange Physical cell identity or a range of physical cell identities. |
EUTRAN-Cell field descriptions |
---|
physicalCellId Physical cell identity of a cell in the cell list. |
cellIndividualOffset Cell individual offset applicable to a specific cell. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on. |
MeasObjectEUTRA field descriptions |
---|
allowedMeasBandwidth The maximum allowed measurement bandwidth on a carrier frequency as defined by the parameter Transmission Bandwidth Configuration "NRB" TS 36.104 [33]. |
blackCellsToAddModListEUTRAN List of cells to add/ modify in the black list of cells. |
blackCellsToRemoveListEUTRAN List of cells to remove from the black list of cells. |
carrierFreq Identifies EUTRA carrier frequency for which this configuration is valid. Network does not configure more than one MeasObjectEUTRA for the same physical frequency, regardless of the E-ARFCN used to indicate this. |
cellsToAddModListEUTRAN List of cells to add/ modify in the cell list. |
cellsToRemoveListEUTRAN List of cells to remove from the cell list. |
eutra-PresenceAntennaPort1 When set to true, the UE may assume that at least two cell-specific antenna ports are used in all neighbouring cells. |
eutra-Q-OffsetRange Used to indicate a cell, or frequency specific offset to be applied when evaluating triggering conditions for measurement reporting. The value is in dB. Value dB-24 corresponds to -24 dB, valuedB-22 corresponds to -22 dB and so on. |
widebandRSRQ-Meas If set to true, the UE shall, when performing RSRQ measurements, use a wider bandwidth in accordance with TS 36.133 [40]. The network may set the field to trueif the measurement bandwidth indicated by allowedMeasBandwidth is 50 resource blocks or larger; otherwise the network sets this field to false. |
The IE MeasObjectId used to identify a measurement object configuration.
The IE MeasObjectNR specifies information applicable for SS/PBCH block(s) intra/inter-frequency measurements and/or CSI-RS intra/inter-frequency measurements.
-- ASN1START -- TAG-MEASOBJECTNR-START MeasObjectNR ::= SEQUENCE { ssbFrequency ARFCN-ValueNR OPTIONAL, -- Cond SSBorAssociatedSSBssbSubcarrierSpacingSubcarrier spacing of SSB. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable.SubcarrierSpacing OPTIONAL, -- Cond SSBorAssociatedSSBsmtc1Primary measurement timing configuration. (see clause 5.5.2.10).SSB-MTC OPTIONAL, -- Cond SSBorAssociatedSSBsmtc2Secondary measurement timing configuration for SS corresponding to this MeasObjectNR with PCI listed in pci-List. For these SS, the periodicity is indicated by periodicity in smtc2 and the timing offset is equal to the offset indicated in periodicityAndOffset modulo periodicity. periodicity in smtc2 can only be set to a value strictly shorter than the periodicity indicated by periodicityAndOffset in smtc1 (e.g. if periodicityAndOffset indicates sf10, periodicity can only be set of sf5, if periodicityAndOffset indicates sf5, smtc2 cannot be configured).SSB-MTC2 OPTIONAL, -- Cond IntraFreqConnectedrefFreqCSI-RSPoint A which is used for mapping of CSI-RS to physical resources according to TS 38.211 [16]clause 7.4.1.5.3.ARFCN-ValueNR OPTIONAL, -- Cond CSI-RSreferenceSignalConfigRS configuration for SS/PBCH block and CSI-RS.ReferenceSignalConfig,absThreshSS-BlocksConsolidationAbsolute threshold for the consolidation of measurement results per SS/PBCH block(s) from L1 filter(s). The field is used for the derivation of cell measurement results as described in 5.5.3.3and the reporting of beam measurement information per SS/PBCH block index as described in 5.5.5.2.ThresholdNR OPTIONAL, -- Need RabsThreshCSI-RS-ConsolidationAbsolute threshold for the consolidation of measurement results per CSI-RS resource(s) from L1 filter(s). The field is used for the derivation of cell measurement results as described in 5.5.3.3 and the reporting of beam measurement information per CSI-RS resource as described in 5.5.5.2.ThresholdNR OPTIONAL, -- Need RnrofSS-BlocksToAverageIndicates the maximum number of measurement results per beam based on SS/PBCH blocks to be averaged. The same value applies for each detected cell associated with this MeasObject.INTEGER (2..maxNrofSS-BlocksToAverage) OPTIONAL, -- Need R nrofCSI-RS-ResourcesToAverage INTEGER (2..maxNrofCSI-RS-ResourcesToAverage) OPTIONAL, -- Need RquantityConfigIndexIndicates the n-th element of quantityConfigNR-List provided in MeasConfig.INTEGER (1..maxNrofQuantityConfig),offsetMOOffset values applicable to all measured cells with reference signal(s) indicated in this MeasObjectNR.Q-OffsetRangeList,cellsToRemoveListList of cells to remove from the cell list.PCI-List OPTIONAL, -- Need NcellsToAddModListList of cells to add/modify in the cell list.CellsToAddModList OPTIONAL, -- Need NblackCellsToRemoveListList of cells to remove from the black list of cells.PCI-RangeIndexList OPTIONAL, -- Need NblackCellsToAddModListList of cells to add/modify in the black list of cells. It applies only to SSB resources.SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need NwhiteCellsToRemoveListList of cells to remove from the white list of cells.PCI-RangeIndexList OPTIONAL, -- Need NwhiteCellsToAddModListList of cells to add/modify in the white list of cells.It applies only to SSB resources.SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeElement OPTIONAL, -- Need N ..., [[freqBandIndicatorNRThe frequency band in which the SSB and/or CSI-RS indicated in this MeasObjectNR are located and according to which the UE shall perform the RRM measurements. This field is always provided when the network configures measurements with this MeasObjectNR.FreqBandIndicatorNR OPTIONAL, -- Need RmeasCycleSCellThe parameter is used only when an SCell is configured on the frequency indicated by the measObjectNR and is in deactivated state, see TS 38.133 [14]. gNB configures the parameter whenever an SCell is configured on the frequency indicated by the measObjectNR, but the field may also be signalled when an SCell is not configured. Value sf160 corresponds to 160 sub-frames, valuesf256 corresponds to 256 sub-frames and so on.ENUMERATED {sf160, sf256, sf320, sf512, sf640, sf1024, sf1280} OPTIONAL -- Need R ]] } ReferenceSignalConfig::= SEQUENCE {ssb-ConfigMobilitySSB configuration for mobility (nominal SSBs, timing configuration).SSB-ConfigMobility OPTIONAL, -- Need Mcsi-rs-ResourceConfigMobilityCSI-RS resources to be used for CSI-RS based RRM measurements.SetupRelease { CSI-RS-ResourceConfigMobility } OPTIONAL -- Need M } SSB-ConfigMobility::= SEQUENCE {ssb-ToMeasureThe set of SS blocks to be measured within the SMTC measurement duration. The first/leftmost bit corresponds to SS/PBCH block index 0, the second bit corresponds to SS/PBCH block index 1, and so on. Value 0 in the bitmap indicates that the corresponding SS/PBCH block is not to be measured while value 1 indicates that the corresponding SS/PBCH block is to be measured (see TS 38.215 [9]). When the field is not configured the UE measures on all SS blocks. Regardless of the value of this field, SS/PBCH blocks outside of the applicable smtc are not to be measured. See TS 38.215 [9]clause 5.1.1.SetupRelease { SSB-ToMeasure } OPTIONAL, -- Need MderiveSSB-IndexFromCellIf this field is set to true, UE assumes SFN and frame boundary alignment across cells on the same frequency carrier as specified in TS 38.133 [14]. Hence, if the UE is configured with a serving cell for which (absoluteFrequencySSB, subcarrierSpacing) in ServingCellConfigCommon is equal to (ssbFrequency, ssbSubcarrierSpacing) in this MeasObjectNR, this field indicates whether the UE can utilize the timing of this serving cell to derive the index of SS block transmitted by neighbour cell. Otherwise, this field indicates whether the UE may use the timing of any detected cell on that target frequency to derive the SSB index of all neighbour cells on that frequency.BOOLEAN, ss-RSSI-Measurement SS-RSSI-Measurement OPTIONAL, -- Need M ... } Q-OffsetRangeList ::= SEQUENCE { rsrpOffsetSSB Q-OffsetRange DEFAULT dB0, rsrqOffsetSSB Q-OffsetRange DEFAULT dB0, sinrOffsetSSB Q-OffsetRange DEFAULT dB0, rsrpOffsetCSI-RS Q-OffsetRange DEFAULT dB0, rsrqOffsetCSI-RS Q-OffsetRange DEFAULT dB0, sinrOffsetCSI-RS Q-OffsetRange DEFAULT dB0 } ThresholdNR ::= SEQUENCE{ thresholdRSRP RSRP-Range OPTIONAL, -- Need R thresholdRSRQ RSRQ-Range OPTIONAL, -- Need R thresholdSINR SINR-Range OPTIONAL -- Need R } CellsToAddModList ::= SEQUENCE (SIZE (1..maxNrofCellMeas)) OF CellsToAddMod CellsToAddMod ::= SEQUENCE {physCellIdPhysical cell identity of a cell in the cell list.PhysCellId,cellIndividualOffsetCell individual offsets applicable to a specific cell.Q-OffsetRangeList } -- TAG-MEASOBJECTNR-STOP -- ASN1STOP
CellsToAddMod field descriptions |
---|
cellIndividualOffset Cell individual offsets applicable to a specific cell. |
physCellId Physical cell identity of a cell in the cell list. |
MeasObjectNR field descriptions |
---|
absThreshCSI-RS-Consolidation Absolute threshold for the consolidation of measurement results per CSI-RS resource(s) from L1 filter(s). The field is used for the derivation of cell measurement results as described in 5.5.3.3 and the reporting of beam measurement information per CSI-RS resource as described in 5.5.5.2. |
absThreshSS-BlocksConsolidation Absolute threshold for the consolidation of measurement results per SS/PBCH block(s) from L1 filter(s). The field is used for the derivation of cell measurement results as described in 5.5.3.3and the reporting of beam measurement information per SS/PBCH block index as described in 5.5.5.2. |
blackCellsToAddModList List of cells to add/modify in the black list of cells. It applies only to SSB resources. |
blackCellsToRemoveList List of cells to remove from the black list of cells. |
cellsToAddModList List of cells to add/modify in the cell list. |
cellsToRemoveList List of cells to remove from the cell list. |
freqBandIndicatorNR The frequency band in which the SSB and/or CSI-RS indicated in this MeasObjectNR are located and according to which the UE shall perform the RRM measurements. This field is always provided when the network configures measurements with this MeasObjectNR. |
measCycleSCell The parameter is used only when an SCell is configured on the frequency indicated by the measObjectNR and is in deactivated state, see TS 38.133 [14]. gNB configures the parameter whenever an SCell is configured on the frequency indicated by the measObjectNR, but the field may also be signalled when an SCell is not configured. Value sf160 corresponds to 160 sub-frames, valuesf256 corresponds to 256 sub-frames and so on. |
nrofCSInrofCSI-RS-ResourcesToAverage Indicates the maximum number of measurement results per beam based on CSI-RS resources to be averaged. The same value applies for each detected cell associated with this MeasObjectNR. |
nrofSS-BlocksToAverage Indicates the maximum number of measurement results per beam based on SS/PBCH blocks to be averaged. The same value applies for each detected cell associated with this MeasObject. |
offsetMO Offset values applicable to all measured cells with reference signal(s) indicated in this MeasObjectNR. |
quantityConfigIndex Indicates the n-th element of quantityConfigNR-List provided in MeasConfig. |
referenceSignalConfig RS configuration for SS/PBCH block and CSI-RS. |
refFreqCSI-RS Point A which is used for mapping of CSI-RS to physical resources according to TS 38.211 [16]clause 7.4.1.5.3. |
smtc1 Primary measurement timing configuration. (see clause 5.5.2.10). |
smtc2 Secondary measurement timing configuration for SS corresponding to this MeasObjectNR with PCI listed in pci-List. For these SS, the periodicity is indicated by periodicity in smtc2 and the timing offset is equal to the offset indicated in periodicityAndOffset modulo periodicity. periodicity in smtc2 can only be set to a value strictly shorter than the periodicity indicated by periodicityAndOffset in smtc1 (e.g. if periodicityAndOffset indicates sf10, periodicity can only be set of sf5, if periodicityAndOffset indicates sf5, smtc2 cannot be configured). |
ssbFrequencyIndicates the frequency of the SS associated to this MeasObjectNR. |
ssbSubcarrierSpacing Subcarrier spacing of SSB. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable. |
whiteCellsToAddModList List of cells to add/modify in the white list of cells.It applies only to SSB resources. |
whiteCellsToRemoveList List of cells to remove from the white list of cells. |
ReferenceSignalConfig field descriptions |
---|
csi-rs-ResourceConfigMobility CSI-RS resources to be used for CSI-RS based RRM measurements. |
ssb-ConfigMobility SSB configuration for mobility (nominal SSBs, timing configuration). |
SSB-ConfigMobility field descriptions |
---|
deriveSSB-IndexFromCell If this field is set to true, UE assumes SFN and frame boundary alignment across cells on the same frequency carrier as specified in TS 38.133 [14]. Hence, if the UE is configured with a serving cell for which (absoluteFrequencySSB, subcarrierSpacing) in ServingCellConfigCommon is equal to (ssbFrequency, ssbSubcarrierSpacing) in this MeasObjectNR, this field indicates whether the UE can utilize the timing of this serving cell to derive the index of SS block transmitted by neighbour cell. Otherwise, this field indicates whether the UE may use the timing of any detected cell on that target frequency to derive the SSB index of all neighbour cells on that frequency. |
ssb-ToMeasure The set of SS blocks to be measured within the SMTC measurement duration. The first/leftmost bit corresponds to SS/PBCH block index 0, the second bit corresponds to SS/PBCH block index 1, and so on. Value 0 in the bitmap indicates that the corresponding SS/PBCH block is not to be measured while value 1 indicates that the corresponding SS/PBCH block is to be measured (see TS 38.215 [9]). When the field is not configured the UE measures on all SS blocks. Regardless of the value of this field, SS/PBCH blocks outside of the applicable smtc are not to be measured. See TS 38.215 [9]clause 5.1.1. |
Conditional Presence | Explanation |
---|---|
CSI-RS | This field is mandatory present if csi-rs-ResourceConfigMobility is configured, otherwise, it is absent. |
SSBorAssociatedSSB | This field is mandatory present if ssb-ConfigMobility is configured or associatedSSB is configured in at least one cell.Otherwise, it is absent, Need R. |
IntraFreqConnected | This field is optionally present, Need R if the UE is configured with a serving cell for which (absoluteFrequencySSB, subcarrierSpacing) in ServingCellConfigCommon is equal to (ssbFrequency, ssbSubcarrierSpacing) in this MeasObjectNR, otherwise, it is absent. |
The IE MeasObjectToAddModList concerns a list of measurement objects to add or modify.
-- ASN1START -- TAG-MEASOBJECTTOADDMODLIST-START MeasObjectToAddModList ::= SEQUENCE (SIZE (1..maxNrofObjectId)) OF MeasObjectToAddMod MeasObjectToAddMod ::= SEQUENCE { measObjectId MeasObjectId, measObject CHOICE { measObjectNR MeasObjectNR, ..., measObjectEUTRA MeasObjectEUTRA } } -- TAG-MEASOBJECTTOADDMODLIST-STOP -- ASN1STOP
The IE MeasResultCellListSFTD-NR consists of SFN and radio frame boundary difference between the PCell and an NR cell as specified in TS 38.215 [9] and TS 38.133 [14].
-- ASN1START -- TAG-MEASRESULTCELLLISTSFTD-NR-START MeasResultCellListSFTD-NR ::= SEQUENCE (SIZE (1..maxCellSFTD)) OF MeasResultCellSFTD-NR MeasResultCellSFTD-NR ::= SEQUENCE { physCellId PhysCellId,sfn-OffsetResultIndicates the SFN difference between the PCell and the NR cell as an integer value according to TS 38.215 [9].INTEGER (0..1023),frameBoundaryOffsetResultIndicates the frame boundary difference between the PCell and the NR cell as an integer value according to TS 38.215 [9].INTEGER (-30720..30719), rsrp-Result RSRP-Range OPTIONAL } -- TAG-MEASRESULTCELLLISTSFTD-NR-STOP -- ASN1STOP
MeasResultCellSFTD-NR field descriptions |
---|
sfn-OffsetResult Indicates the SFN difference between the PCell and the NR cell as an integer value according to TS 38.215 [9]. |
frameBoundaryOffsetResult Indicates the frame boundary difference between the PCell and the NR cell as an integer value according to TS 38.215 [9]. |
The IE MeasResultCellListSFTD-EUTRA consists of SFN and radio frame boundary difference between the PCell and an E-UTRA PSCell.
-- ASN1START -- TAG-MEASRESULTCELLLISTSFTD-EUTRA-START MeasResultCellListSFTD-EUTRA ::= SEQUENCE (SIZE (1..maxCellSFTD)) OF MeasResultSFTD-EUTRA MeasResultSFTD-EUTRA ::= SEQUENCE {eutra-PhysCellIdIdentifies the physical cell identity of the E-UTRA cell for which the reporting is being performed.EUTRA-PhysCellId,sfn-OffsetResultIndicates the SFN difference between the PCell and the E-UTRA cell as an integer value according to TS 38.215 [9].INTEGER (0..1023),frameBoundaryOffsetResultIndicates the frame boundary difference between the PCell and the E-UTRA cell as an integer value according to TS 38.215 [9].INTEGER (-30720..30719), rsrp-Result RSRP-Range OPTIONAL } -- TAG-MEASRESULTCELLLISTSFTD-EUTRA-STOP -- ASN1STOP
MeasResultSFTD-EUTRA field descriptions |
---|
eutra-PhysCellId Identifies the physical cell identity of the E-UTRA cell for which the reporting is being performed. |
sfn-OffsetResult Indicates the SFN difference between the PCell and the E-UTRA cell as an integer value according to TS 38.215 [9]. |
frameBoundaryOffsetResult Indicates the frame boundary difference between the PCell and the E-UTRA cell as an integer value according to TS 38.215 [9]. |
The IE MeasResults covers measured results for intra-frequency, inter-frequency, and inter-RAT mobility.
-- ASN1START -- TAG-MEASRESULTS-START MeasResults ::= SEQUENCE {measIdIdentifies the measurement identity for which the reporting is being performed.MeasId,measResultServingMOListMeasured results of measured cells with reference signals indicated in the serving cell measurement objects including measurement results of SpCell, configured SCell(s) and best neighbouring cell within measured cells with reference signals indicated in on each serving cell measurement object.MeasResultServMOList, measResultNeighCells CHOICE {measResultListNRList of measured results for the maximum number of reported best cells for an NR measurement identity.MeasResultListNR, ...,measResultListEUTRAList of measured results for the maximum number of reported best cells for an E-UTRA measurement identity.MeasResultListEUTRA } OPTIONAL, ..., [[measResultServFreqListEUTRA-SCGMeasured results of the E-UTRA SCG serving frequencies: the measurement result of PSCell and each SCell, if any, and of the best neighbouring cell on each E-UTRA SCG serving frequency.MeasResultServFreqListEUTRA-SCG OPTIONAL,measResultServFreqListNR-SCGMeasured results of the NR SCG serving frequencies: the measurement result of PSCell and each SCell, if any, and of the best neighbouring cell on each NR SCG serving frequency.MeasResultServFreqListNR-SCG OPTIONAL,measResultSFTD-EUTRASFTD measurement results between the PCell and the E-UTRA PScell in NE-DC.MeasResultSFTD-EUTRA OPTIONAL,measResultSFTD-NRSFTD measurement results between the PCell and the NR PScell in NR-DC.MeasResultCellSFTD-NR OPTIONAL ]], [[measResultCellListSFTD-NRSFTD measurement results between the PCell and the NR neighbour cell(s) in NR standalone.MeasResultCellListSFTD-NR OPTIONAL ]] } MeasResultServMOList ::= SEQUENCE (SIZE (1..maxNrofServingCells)) OF MeasResultServMO MeasResultServMO ::= SEQUENCE { servCellId ServCellIndex, measResultServingCell MeasResultNR, measResultBestNeighCell MeasResultNR OPTIONAL, ... } MeasResultListNR ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultNR MeasResultNR ::= SEQUENCE {physCellIdThe physical cell identity of the NR cell for which the reporting is being performed.PhysCellId OPTIONAL, measResult SEQUENCE {cellResultsCell level measurement results.SEQUENCE{resultsSSB-CellCell level measurement results based on SS/PBCH related measurements.MeasQuantityResults OPTIONAL,resultsCSI-RS-CellCell level measurement results based on CSI-RS related measurements.MeasQuantityResults OPTIONAL },rsIndexResultsBeam level measurement results.SEQUENCE{resultsSSB-IndexesBeam level measurement results based on SS/PBCH related measurements.ResultsPerSSB-IndexList OPTIONAL,resultsCSI-RS-IndexesBeam level measurement results based on CSI-RS related measurements.ResultsPerCSI-RS-IndexList OPTIONAL } OPTIONAL }, ..., [[ cgi-Info CGI-InfoNR OPTIONAL ]] } MeasResultListEUTRA ::= SEQUENCE (SIZE (1..maxCellReport)) OF MeasResultEUTRA MeasResultEUTRA ::= SEQUENCE {eutra-PhysCellIdIdentifies the physical cell identity of the E-UTRA cell for which the reporting is being performed. The UE reports a value in the range 0..503, other values are reserved.PhysCellId, measResult MeasQuantityResultsEUTRA, cgi-Info CGI-InfoEUTRA OPTIONAL, ... } MultiBandInfoListEUTRA ::= SEQUENCE (SIZE (1..maxMultiBands)) OF FreqBandIndicatorEUTRA MeasQuantityResults ::= SEQUENCE { rsrp RSRP-Range OPTIONAL, rsrq RSRQ-Range OPTIONAL, sinr SINR-Range OPTIONAL } MeasQuantityResultsEUTRA ::= SEQUENCE { rsrp RSRP-RangeEUTRA OPTIONAL, rsrq RSRQ-RangeEUTRA OPTIONAL, sinr SINR-RangeEUTRA OPTIONAL } ResultsPerSSB-IndexList::= SEQUENCE (SIZE (1..maxNrofIndexesToReport2)) OF ResultsPerSSB-Index ResultsPerSSB-Index ::= SEQUENCE { ssb-Index SSB-Index, ssb-Results MeasQuantityResults OPTIONAL } ResultsPerCSI-RS-IndexList::= SEQUENCE (SIZE (1..maxNrofIndexesToReport2)) OF ResultsPerCSI-RS-Index ResultsPerCSI-RS-Index ::= SEQUENCE { csi-RS-Index CSI-RS-Index, csi-RS-Results MeasQuantityResults OPTIONAL } MeasResultServFreqListEUTRA-SCG ::= SEQUENCE (SIZE (1..maxNrofServingCellsEUTRA)) OF MeasResult2EUTRA MeasResultServFreqListNR-SCG ::= SEQUENCE (SIZE (1..maxNrofServingCells)) OF MeasResult2NR -- TAG-MEASRESULTS-STOP -- ASN1STOP
MeasResultEUTRA field descriptions |
---|
eutra-PhysCellId Identifies the physical cell identity of the E-UTRA cell for which the reporting is being performed. The UE reports a value in the range 0..503, other values are reserved. |
MeasResultNR field descriptions |
---|
cellResults Cell level measurement results. |
physCellId The physical cell identity of the NR cell for which the reporting is being performed. |
resultsSSB-Cell Cell level measurement results based on SS/PBCH related measurements. |
resultsSSB-Indexes Beam level measurement results based on SS/PBCH related measurements. |
resultsCSI-RS-Cell Cell level measurement results based on CSI-RS related measurements. |
resultsCSI-RS-Indexes Beam level measurement results based on CSI-RS related measurements. |
rsIndexResults Beam level measurement results. |
MeasResults field descriptions |
---|
measId Identifies the measurement identity for which the reporting is being performed. |
measResultCellListSFTD-NR SFTD measurement results between the PCell and the NR neighbour cell(s) in NR standalone. |
measResultEUTRA Measured results of an E-UTRA cell. |
measResultListEUTRA List of measured results for the maximum number of reported best cells for an E-UTRA measurement identity. |
measResultListNR List of measured results for the maximum number of reported best cells for an NR measurement identity. |
measResultNR Measured results of an NR cell. |
measResultServFreqListEUTRA-SCG Measured results of the E-UTRA SCG serving frequencies: the measurement result of PSCell and each SCell, if any, and of the best neighbouring cell on each E-UTRA SCG serving frequency. |
measResultServFreqListNR-SCG Measured results of the NR SCG serving frequencies: the measurement result of PSCell and each SCell, if any, and of the best neighbouring cell on each NR SCG serving frequency. |
measResultServingMOList Measured results of measured cells with reference signals indicated in the serving cell measurement objects including measurement results of SpCell, configured SCell(s) and best neighbouring cell within measured cells with reference signals indicated in on each serving cell measurement object. |
measResultSFTD-EUTRA SFTD measurement results between the PCell and the E-UTRA PScell in NE-DC. |
measResultSFTD-NR SFTD measurement results between the PCell and the NR PScell in NR-DC. |
The IE MeasResult2EUTRA contains measurements on E-UTRA frequencies.
-- ASN1START -- TAG-MEASRESULT2EUTRA-START MeasResult2EUTRA ::= SEQUENCE { carrierFreq ARFCN-ValueEUTRA, measResultServingCell MeasResultEUTRA OPTIONAL, measResultBestNeighCell MeasResultEUTRA OPTIONAL, ... } -- TAG-MEASRESULT2EUTRA-STOP -- ASN1STOP
The IE MeasResult2NR contains measurements on NR frequencies.
-- ASN1START -- TAG-MEASRESULT2NR-START MeasResult2NR ::= SEQUENCE { ssbFrequency ARFCN-ValueNR OPTIONAL, refFreqCSI-RS ARFCN-ValueNR OPTIONAL, measResultServingCell MeasResultNR OPTIONAL, measResultNeighCellListNR MeasResultListNR OPTIONAL, ... } -- TAG-MEASRESULT2NR-STOP -- ASN1STOP
The IE MeasResultSCG-Failure is used to provide information regarding failures detected by the UE in (NG)EN-DC and NR-DC.
-- ASN1START -- TAG-MEASRESULTSCG-FAILURE-START MeasResultSCG-Failure ::= SEQUENCE { measResultPerMOList MeasResultList2NR, ... } MeasResultList2NR ::= SEQUENCE (SIZE (1..maxFreq)) OF MeasResult2NR -- TAG-MEASRESULTSCG-FAILURE-STOP -- ASN1STOP
The IE MeasTriggerQuantityEUTRA is used to configure the trigger quantity and reporting range for E-UTRA measurements. The RSRP,RSRQ and SINR ranges correspond to RSRP-Range, RSRQ-Range and RS-SINR-Range in TS 36.331 [10], respectively.
-- ASN1START -- TAG-MEASTRIGGERQUANTITYEUTRA-START MeasTriggerQuantityEUTRA::= CHOICE { rsrp RSRP-RangeEUTRA, rsrq RSRQ-RangeEUTRA, sinr SINR-RangeEUTRA } RSRP-RangeEUTRA ::= INTEGER (0..97) RSRQ-RangeEUTRA ::= INTEGER (0..34) SINR-RangeEUTRA ::= INTEGER (0..127) -- TAG-MEASTRIGGERQUANTITYEUTRA-STOP -- ASN1STOP
The IE MobilityStateParameters contains parameters to determine UE mobility state.
-- ASN1START -- TAG-MOBILITYSTATEPARAMETERS-START MobilityStateParameters ::= SEQUENCE{t-EvaluationThe duration for evaluating criteria to enter mobility states. Corresponds to TCRmax in TS 38.304 [20]. Value in seconds, s30 corresponds to 30 s and so on.ENUMERATED { s30, s60, s120, s180, s240, spare3, spare2, spare1},t-HystNormalThe additional duration for evaluating criteria to enter normal mobility state. Corresponds to TCRmaxHyst in TS 38.304 [20]. Value in seconds, values30 corresponds to 30 seconds and so on.ENUMERATED { s30, s60, s120, s180, s240, spare3, spare2, spare1},n-CellChangeMediumThe number of cell changes to enter medium mobility state. Corresponds to NCR_M in TS 38.304 [20].INTEGER (1..16),n-CellChangeHighThe number of cell changes to enter high mobility state. Corresponds to NCR_H in TS 38.304 [20].INTEGER (1..16) } -- TAG-MOBILITYSTATEPARAMETERS-STOP -- ASN1STOP
MobilityStateParameters field descriptions |
---|
n-CellChangeHigh The number of cell changes to enter high mobility state. Corresponds to NCR_H in TS 38.304 [20]. |
n-CellChangeMedium The number of cell changes to enter medium mobility state. Corresponds to NCR_M in TS 38.304 [20]. |
t-Evaluation The duration for evaluating criteria to enter mobility states. Corresponds to TCRmax in TS 38.304 [20]. Value in seconds, s30 corresponds to 30 s and so on. |
t-HystNormal The additional duration for evaluating criteria to enter normal mobility state. Corresponds to TCRmaxHyst in TS 38.304 [20]. Value in seconds, values30 corresponds to 30 seconds and so on. |
The IE MultiFrequencyBandListNR is used to configure a list of one or multiple NR frequency bands.
-- ASN1START -- TAG-MULTIFREQUENCYBANDLISTNR-START MultiFrequencyBandListNR ::= SEQUENCE (SIZE (1..maxNrofMultiBands)) OF FreqBandIndicatorNR -- TAG-MULTIFREQUENCYBANDLISTNR-STOP -- ASN1STOP
The IE MultiFrequencyBandListNR-SIB indicates the list of frequency bands, for which cell (re-)selection parameters are common, and a list of additionalPmax and additionalSpectrumEmission.
-- ASN1START -- TAG-MULTIFREQUENCYBANDLISTNR-SIB-START MultiFrequencyBandListNR-SIB ::= SEQUENCE (SIZE (1.. maxNrofMultiBands)) OF NR-MultiBandInfo NR-MultiBandInfo ::= SEQUENCE {freqBandIndicatorNRProvides an NR frequency band number as defined in TS 38.101-1 [15] and TS 38.101-2 [39], table 5.2-1.FreqBandIndicatorNR OPTIONAL, -- Cond OptULNotSIB2nr-NS-PmaxListProvides a list of additionalPmax and additionalSpectrumEmission values. If the field is absent the UE uses value 0 for the additionalSpectrumEmission (see TS 38.101-1 [15] table 6.2.3.1-1A, and TS 38.101-2 [39], table 6.2.3.1-2).NR-NS-PmaxList OPTIONAL -- Need S } -- TAG-MULTIFREQUENCYBANDLISTNR-SIB-STOP -- ASN1STOP
NR-MultiBandInfo field descriptions |
---|
freqBandIndicatorNR Provides an NR frequency band number as defined in TS 38.101-1 [15] and TS 38.101-2 [39], table 5.2-1. |
nr-NS-PmaxList Provides a list of additionalPmax and additionalSpectrumEmission values. If the field is absent the UE uses value 0 for the additionalSpectrumEmission (see TS 38.101-1 [15] table 6.2.3.1-1A, and TS 38.101-2 [39], table 6.2.3.1-2). |
Conditional Presence | Explanation |
---|---|
OptULNotSIB2 | The field is absent for SIB2 and is mandatory present in SIB4 and frequencyInfoDL-SIB. Otherwise, if the field is absent in frequencyInfoUL-SIB in UplinkConfigCommonSIB, the UE will use the frequency band indicated in frequencyInfoDL-SIB in DownlinkConfigCommonSIB. |
The IE NextHopChainingCount is used to update the KgNB key and corresponds to parameter NCC: See TS 33.501 [11].
The IE NG-5G-S-TMSI contains a 5G S-Temporary Mobile Subscription Identifier (5G-S-TMSI), a temporary UE identity provided by the 5GC which uniquely identifies the UE within the tracking area, see TS 23.003 [21].
The IE NR-NS-PmaxList is used to configure a list of additionalPmax and additionalSpectrumEmission, as defined in TS 38.101-1 [15], table 6.2.3.1-1A, and TS 38.101-2 [39], table 6.2.3.1-2, for a given frequency band.
-- ASN1START -- TAG-NR-NS-PMAXLIST-START NR-NS-PmaxList ::= SEQUENCE (SIZE (1..maxNR-NS-Pmax)) OF NR-NS-PmaxValue NR-NS-PmaxValue ::= SEQUENCE { additionalPmax P-Max OPTIONAL, -- Need N additionalSpectrumEmission AdditionalSpectrumEmission } -- TAG-NR-NS-PMAXLIST-STOP -- ASN1STOP
The IE NZP-CSI-RS-Resource is used to configure Non-Zero-Power (NZP) CSI-RS transmitted in the cell where the IE is included, which the UE may be configured to measure on (see TS 38.214 [19], clause 5.2.2.3.1). A change of configuration between periodic, semi-persistent or aperiodic for an NZP-CSI-RS-Resource is not supported without a release and add.
-- ASN1START -- TAG-NZP-CSI-RS-RESOURCE-START NZP-CSI-RS-Resource ::= SEQUENCE { nzp-CSI-RS-ResourceId NZP-CSI-RS-ResourceId,resourceMappingOFDM symbol location(s) in a slot and subcarrier occupancy in a PRB of the CSI-RS resource.CSI-RS-ResourceMapping,powerControlOffsetPower offset of PDSCH RE to NZP CSI-RS RE. Value in dB (see TS 38.214 [19], clauses 5.2.2.3.1 and 4.1).INTEGER (-8..15),powerControlOffsetSSPower offset of NZP CSI-RS RE to SSS RE. Value in dB (see TS 38.214 [19], clause 5.2.2.3.1).ENUMERATED{db-3, db0, db3, db6} OPTIONAL, -- Need RscramblingIDScrambling ID (see TS 38.214 [19], clause 5.2.2.3.1).ScramblingId,periodicityAndOffsetPeriodicity and slot offset sl1 corresponds to a periodicity of 1 slot, sl2 to a periodicity of two slots, and so on. The corresponding offset is also given in number of slots (see TS 38.214 [19], clause 5.2.2.3.1). Network always configures the UE with a value for this field for periodic and semi-persistent NZP-CSI-RS-Resource (as indicated in CSI-ResourceConfig).CSI-ResourcePeriodicityAndOffset OPTIONAL, -- Cond PeriodicOrSemiPersistentqcl-InfoPeriodicCSI-RSFor a target periodic CSI-RS, contains a reference to one TCI-State in TCI-States for providing the QCL source and QCL type. For periodic CSI-RS, the source can be SSB or another periodic-CSI-RS. Refers to the TCI-State which has this value for tci-StateId and is defined in tci-StatesToAddModList in the PDSCH-Config included in the BWP-Downlink corresponding to the serving cell and to the DL BWP to which the resource belongs to (see TS 38.214 [19], clause 5.2.2.3.1).TCI-StateId OPTIONAL, -- Cond Periodic ... } -- TAG-NZP-CSI-RS-RESOURCE-STOP -- ASN1STOP
NZP-CSI-RS-Resource field descriptions |
---|
periodicityAndOffset Periodicity and slot offset sl1 corresponds to a periodicity of 1 slot, sl2 to a periodicity of two slots, and so on. The corresponding offset is also given in number of slots (see TS 38.214 [19], clause 5.2.2.3.1). Network always configures the UE with a value for this field for periodic and semi-persistent NZP-CSI-RS-Resource (as indicated in CSI-ResourceConfig). |
powerControlOffset Power offset of PDSCH RE to NZP CSI-RS RE. Value in dB (see TS 38.214 [19], clauses 5.2.2.3.1 and 4.1). |
powerControlOffsetSS Power offset of NZP CSI-RS RE to SSS RE. Value in dB (see TS 38.214 [19], clause 5.2.2.3.1). |
qcl-InfoPeriodicCSI-RS For a target periodic CSI-RS, contains a reference to one TCI-State in TCI-States for providing the QCL source and QCL type. For periodic CSI-RS, the source can be SSB or another periodic-CSI-RS. Refers to the TCI-State which has this value for tci-StateId and is defined in tci-StatesToAddModList in the PDSCH-Config included in the BWP-Downlink corresponding to the serving cell and to the DL BWP to which the resource belongs to (see TS 38.214 [19], clause 5.2.2.3.1). |
resourceMapping OFDM symbol location(s) in a slot and subcarrier occupancy in a PRB of the CSI-RS resource. |
scramblingID Scrambling ID (see TS 38.214 [19], clause 5.2.2.3.1). |
Conditional Presence | Explanation |
---|---|
Periodic | The field is optionally present, Need M, for periodic NZP-CSI-RS-Resources (as indicated in CSI-ResourceConfig). The field is absent otherwise. |
PeriodicOrSemiPersistent | The field is optionally present, Need M, for periodic and semi-persistent NZP-CSI-RS-Resources (as indicated in CSI-ResourceConfig). The field is absent otherwise. |
The IE NZP-CSI-RS-ResourceId is used to identify one NZP-CSI-RS-Resource.
The IE NZP-CSI-RS-ResourceSet is a set of Non-Zero-Power (NZP) CSI-RS resources (their IDs) and set-specific parameters.
-- ASN1START -- TAG-NZP-CSI-RS-RESOURCESET-START NZP-CSI-RS-ResourceSet ::= SEQUENCE { nzp-CSI-ResourceSetId NZP-CSI-RS-ResourceSetId,nzp-CSI-RS-ResourcesNZP-CSI-RS-Resources associated with this NZP-CSI-RS resource set (see TS 38.214 [19], clause 5.2). For CSI, there are at most 8 NZP CSI RS resources per resource set.SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourcesPerSet)) OF NZP-CSI-RS-ResourceId,repetitionIndicates whether repetition is on/off. If the field is set to offor if the field is absent, the UE may not assume that the NZP-CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter (see TS 38.214 [19], clauses 5.2.2.3.1 and 5.1.6.1.2). Itcan only be configured for CSI-RS resource sets which are associated with CSI-ReportConfig with report of L1 RSRP or "no report".ENUMERATED { on, off } OPTIONAL, -- Need SaperiodicTriggeringOffsetOffset X between the slot containing the DCI that triggers a set of aperiodic NZP CSI-RS resources and the slot in which the CSI-RS resource set is transmitted. The value 0 corresponds to 0 slots, value 1 corresponds to 1 slot, value 2 corresponds to 2 slots, value 3 corresponds to 3 slots, value 4 corresponds to 4 slots, value 5 corresponds to 16 slots, value 6 corresponds to 24 slots. When the field is absent the UE applies the value 0.INTEGER(0..6) OPTIONAL, -- Need Strs-InfoIndicates that the antenna port for all NZP-CSI-RS resources in the CSI-RS resource set is same. If the field is absent or released the UE applies the value false (see TS 38.214 [19], clause 5.2.2.3.1).ENUMERATED {true} OPTIONAL, -- Need R ... } -- TAG-NZP-CSI-RS-RESOURCESET-STOP -- ASN1STOP
NZP-CSI-RS-ResourceSet field descriptions |
---|
aperiodicTriggeringOffset Offset X between the slot containing the DCI that triggers a set of aperiodic NZP CSI-RS resources and the slot in which the CSI-RS resource set is transmitted. The value 0 corresponds to 0 slots, value 1 corresponds to 1 slot, value 2 corresponds to 2 slots, value 3 corresponds to 3 slots, value 4 corresponds to 4 slots, value 5 corresponds to 16 slots, value 6 corresponds to 24 slots. When the field is absent the UE applies the value 0. |
nzp-CSI-RS-Resources NZP-CSI-RS-Resources associated with this NZP-CSI-RS resource set (see TS 38.214 [19], clause 5.2). For CSI, there are at most 8 NZP CSI RS resources per resource set. |
repetition Indicates whether repetition is on/off. If the field is set to offor if the field is absent, the UE may not assume that the NZP-CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter (see TS 38.214 [19], clauses 5.2.2.3.1 and 5.1.6.1.2). Itcan only be configured for CSI-RS resource sets which are associated with CSI-ReportConfig with report of L1 RSRP or "no report". |
trs-Info Indicates that the antenna port for all NZP-CSI-RS resources in the CSI-RS resource set is same. If the field is absent or released the UE applies the value false (see TS 38.214 [19], clause 5.2.2.3.1). |
The IE NZP-CSI-RS-ResourceSetId is used to identify one NZP-CSI-RS-ResourceSet.
The IE P-Max is used to limit the UE's uplink transmission power on a carrier frequency, in TS 38.101-1 [15] and is used to calculate the parameter Pcompensation defined in TS 38.304 [20].
The IE PCI-List concerns a list of physical cell identities, which may be used for different purposes.
-- ASN1START -- TAG-PCI-LIST-START PCI-List ::= SEQUENCE (SIZE (1..maxNrofCellMeas)) OF PhysCellId -- TAG-PCI-LIST-STOP -- ASN1STOP
The IE PCI-Range is used to encode either a single or a range of physical cell identities. The range is encoded by using a start value and by indicating the number of consecutive physical cell identities (including start) in the range. For fields comprising multiple occurrences of PCI-Range, the Network may configure overlapping ranges of physical cell identities.
-- ASN1START -- TAG-PCI-RANGE-START PCI-Range ::= SEQUENCE {startIndicates the lowest physical cell identity in the range.PhysCellId,rangeIndicates the number of physical cell identities in the range (including start). Value n4 corresponds with 4, valuen8 corresponds with 8 and so on. The UE shall apply value 1 in case the field is absent, in which case only the physical cell identity value indicated by start applies.ENUMERATED {n4, n8, n12, n16, n24, n32, n48, n64, n84, n96, n128, n168, n252, n504, n1008,spare1} OPTIONAL -- Need S } -- TAG-PCI-RANGE-STOP -- ASN1STOP
PCI-Range field descriptions |
---|
range Indicates the number of physical cell identities in the range (including start). Value n4 corresponds with 4, valuen8 corresponds with 8 and so on. The UE shall apply value 1 in case the field is absent, in which case only the physical cell identity value indicated by start applies. |
start Indicates the lowest physical cell identity in the range. |
The IE PCI-RangeElement is used to define a PCI-Range as part of a list (e.g. AddMod list).
-- ASN1START -- TAG-PCI-RANGEELEMENT-START PCI-RangeElement ::= SEQUENCE { pci-RangeIndex PCI-RangeIndex,pci-RangePhysical cell identity or a range of physical cell identities.PCI-Range } -- TAG-PCI-RANGEELEMENT-STOP -- ASN1STOP
PCI-RangeElement field descriptions |
---|
pci-Range Physical cell identity or a range of physical cell identities. |
The IE PCI-RangeIndex identifies a physical cell id range, which may be used for different purposes.
The IE PCI-RangeIndexList concerns a list of indexes of physical cell id ranges, which may be used for different purposes.
-- ASN1START -- TAG-PCI-RANGEINDEXLIST-START PCI-RangeIndexList ::= SEQUENCE (SIZE (1..maxNrofPCI-Ranges)) OF PCI-RangeIndex -- TAG-PCI-RANGEINDEXLIST-STOP -- ASN1STOP
The IE PDCCH-Config is used to configure UE specific PDCCH parameters such as control resource sets (CORESET), search spaces and additional parameters for acquiring the PDCCH. If this IE is used for the scheduled cell in case of cross carrier scheduling, the fields other than searchSpacesToAddModList and searchSpacesToReleaseList are absent.
-- ASN1START -- TAG-PDCCH-CONFIG-START PDCCH-Config ::= SEQUENCE {controlResourceSetToAddModListList of UE specifically configured Control Resource Sets (CORESETs) to be used by the UE. The network configures at most as many CORESETs per DL BWP as specified in TS 38.213 [13], clause 10.1. In case network reconfigures control resource set with the same ControlResourceSetId as used for commonControlResourceSet configured via PDCCH-ConfigCommon, the configuration from PDCCH-Config always takes precedence and should not be updated by the UE based on servingCellConfigCommon.SEQUENCE(SIZE(1..3)) OF ControlResourceSet OPTIONAL, -- Need NcontrolResourceSetToReleaseListList of UE specifically configured Control Resource Sets (CORESETs) to be released by the UE. This field only applies to CORESETs configured by controlResourceSetToAddModList and does not release the field commonControlResourceSet configured by PDCCH-ConfigCommon.SEQUENCE(SIZE(1..3)) OF ControlResourceSetId OPTIONAL, -- Need NsearchSpacesToAddModListList of UE specifically configured Search Spaces. The network configures at most 10 Search Spaces per BWP per cell (including UE-specific and common Search Spaces).SEQUENCE(SIZE(1..10)) OF SearchSpace OPTIONAL, -- Need N searchSpacesToReleaseList SEQUENCE(SIZE(1..10)) OF SearchSpaceId OPTIONAL, -- Need NdownlinkPreemptionConfiguration of downlink preemption indications to be monitored in this cell (see TS 38.213 [13], clause 11.2).SetupRelease { DownlinkPreemption } OPTIONAL, -- Need Mtpc-PUSCHEnable and configure reception of group TPC commands for PUSCH.SetupRelease { PUSCH-TPC-CommandConfig } OPTIONAL, -- Need Mtpc-PUCCHEnable and configure reception of group TPC commands for PUCCH.SetupRelease { PUCCH-TPC-CommandConfig } OPTIONAL, -- Need Mtpc-SRSEnable and configure reception of group TPC commands for SRS.SetupRelease { SRS-TPC-CommandConfig} OPTIONAL, -- Need M ... } -- TAG-PDCCH-CONFIG-STOP -- ASN1STOP
PDCCH-Config field descriptions |
---|
controlResourceSetToAddModList List of UE specifically configured Control Resource Sets (CORESETs) to be used by the UE. The network configures at most as many CORESETs per DL BWP as specified in TS 38.213 [13], clause 10.1. In case network reconfigures control resource set with the same ControlResourceSetId as used for commonControlResourceSet configured via PDCCH-ConfigCommon, the configuration from PDCCH-Config always takes precedence and should not be updated by the UE based on servingCellConfigCommon. |
controlResourceSetToReleaseList List of UE specifically configured Control Resource Sets (CORESETs) to be released by the UE. This field only applies to CORESETs configured by controlResourceSetToAddModList and does not release the field commonControlResourceSet configured by PDCCH-ConfigCommon. |
downlinkPreemption Configuration of downlink preemption indications to be monitored in this cell (see TS 38.213 [13], clause 11.2). |
searchSpacesToAddModList List of UE specifically configured Search Spaces. The network configures at most 10 Search Spaces per BWP per cell (including UE-specific and common Search Spaces). |
tpc-PUCCH Enable and configure reception of group TPC commands for PUCCH. |
tpc-PUSCH Enable and configure reception of group TPC commands for PUSCH. |
tpc-SRS Enable and configure reception of group TPC commands for SRS. |
The IE PDCCH-ConfigCommon is used to configure cell specific PDCCH parameters provided in SIB as well as in dedicated signalling.
-- ASN1START -- TAG-PDCCH-CONFIGCOMMON-START PDCCH-ConfigCommon ::= SEQUENCE {controlResourceSetZeroParameters of the common CORESET#0 which can be used in any common or UE-specific search spaces. The values are interpreted like the corresponding bits in MIBpdcch-ConfigSIB1. Even though this field is only configured in the initial BWP (BWP#0) controlResourceSetZero can be used in search spaces configured in other DL BWP(s) than the initial DL BWP if the conditions defined in TS 38.213 [13], clause 10 are satisfied.ControlResourceSetZero OPTIONAL, -- Cond InitialBWP-OnlycommonControlResourceSetAn additional common control resource set which may be configured and used for any common or UE-specific search space. If the network configures this field, it uses a ControlResourceSetId other than 0 for this ControlResourceSet. The network configures the commonControlResourceSet in SIB1 so that it is contained in the bandwidth of CORESET#0.ControlResourceSet OPTIONAL, -- Need RsearchSpaceZeroParameters of the common SearchSpace#0. The values are interpreted like the corresponding bits in MIBpdcch-ConfigSIB1. Even though this field is only configured in the initial BWP (BWP#0),searchSpaceZero can be used in search spaces configured in other DL BWP(s) than the initial DL BWP if the conditions described in TS 38.213 [13], clause 10, are satisfied.SearchSpaceZero OPTIONAL, -- Cond InitialBWP-OnlycommonSearchSpaceListA list of additional common search spaces. If the network configures this field, it uses the SearchSpaceIds other than 0.If the field is included, it replaces any previous list, i.e. all the entries of the list are replaced and each of the SearchSpace entries is considered to be newly created and the conditions and Need codes for setup of the entry apply.SEQUENCE (SIZE(1..4)) OF SearchSpace OPTIONAL, -- Need RsearchSpaceSIB1ID of the search space for SIB1 message. In the initial DL BWP of the UE′s PCell, the network sets this field to 0. If the field is absent, the UE does not receive SIB1 in this BWP. (see TS 38.213 [13], clause 10)SearchSpaceId OPTIONAL, -- Need SsearchSpaceOtherSystemInformationID of the Search space for other system information, i.e., SIB2 and beyond (see TS 38.213 [13], clause 10.1) If the field is absent, the UE does not receive other system information in this BWP.SearchSpaceId OPTIONAL, -- Need SpagingSearchSpaceID of the Search space for paging (see TS 38.213 [13], clause 10.1). If the field is absent, the UE does not receive paging in this BWP (see TS 38.213 [13], clause 10).SearchSpaceId OPTIONAL, -- Need Sra-SearchSpaceID of the Search space for random access procedure (see TS 38.213 [13], clause 10.1). If the field is absent, the UE does not receive RAR in this BWP.This field is mandatory present in the DL BWP(s) if the conditions described in TS 38.321 [3], clause 5.15 are met.SearchSpaceId OPTIONAL, -- Need S ..., [[firstPDCCH-MonitoringOccasionOfPOIndicates the first PDCCH monitoring occasion of each PO of the PF on this BWP, see TS 38.304 [20].CHOICE { sCS15KHZoneT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..139), sCS30KHZoneT-SCS15KHZhalfT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..279), sCS60KHZoneT-SCS30KHZhalfT-SCS15KHZquarterT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..559), sCS120KHZoneT-SCS60KHZhalfT-SCS30KHZquarterT-SCS15KHZoneEighthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..1119), sCS120KHZhalfT-SCS60KHZquarterT-SCS30KHZoneEighthT-SCS15KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..2239), sCS120KHZquarterT-SCS60KHZoneEighthT-SCS30KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..4479), sCS120KHZoneEighthT-SCS60KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..8959), sCS120KHZoneSixteenthT SEQUENCE (SIZE (1..maxPO-perPF)) OF INTEGER (0..17919) } OPTIONAL -- Cond OtherBWP ]] } -- TAG-PDCCH-CONFIGCOMMON-STOP -- ASN1STOP
PDCCH-ConfigCommon field descriptions |
---|
commonControlResourceSet An additional common control resource set which may be configured and used for any common or UE-specific search space. If the network configures this field, it uses a ControlResourceSetId other than 0 for this ControlResourceSet. The network configures the commonControlResourceSet in SIB1 so that it is contained in the bandwidth of CORESET#0. |
commonSearchSpaceList A list of additional common search spaces. If the network configures this field, it uses the SearchSpaceIds other than 0.If the field is included, it replaces any previous list, i.e. all the entries of the list are replaced and each of the SearchSpace entries is considered to be newly created and the conditions and Need codes for setup of the entry apply. |
controlResourceSetZero Parameters of the common CORESET#0 which can be used in any common or UE-specific search spaces. The values are interpreted like the corresponding bits in MIBpdcch-ConfigSIB1. Even though this field is only configured in the initial BWP (BWP#0) controlResourceSetZero can be used in search spaces configured in other DL BWP(s) than the initial DL BWP if the conditions defined in TS 38.213 [13], clause 10 are satisfied. |
firstPDCCH-MonitoringOccasionOfPO Indicates the first PDCCH monitoring occasion of each PO of the PF on this BWP, see TS 38.304 [20]. |
pagingSearchSpace ID of the Search space for paging (see TS 38.213 [13], clause 10.1). If the field is absent, the UE does not receive paging in this BWP (see TS 38.213 [13], clause 10). |
ra-SearchSpace ID of the Search space for random access procedure (see TS 38.213 [13], clause 10.1). If the field is absent, the UE does not receive RAR in this BWP.This field is mandatory present in the DL BWP(s) if the conditions described in TS 38.321 [3], clause 5.15 are met. |
searchSpaceOtherSystemInformation ID of the Search space for other system information, i.e., SIB2 and beyond (see TS 38.213 [13], clause 10.1) If the field is absent, the UE does not receive other system information in this BWP. |
searchSpaceSIB1 ID of the search space for SIB1 message. In the initial DL BWP of the UE′s PCell, the network sets this field to 0. If the field is absent, the UE does not receive SIB1 in this BWP. (see TS 38.213 [13], clause 10) |
searchSpaceZero Parameters of the common SearchSpace#0. The values are interpreted like the corresponding bits in MIBpdcch-ConfigSIB1. Even though this field is only configured in the initial BWP (BWP#0),searchSpaceZero can be used in search spaces configured in other DL BWP(s) than the initial DL BWP if the conditions described in TS 38.213 [13], clause 10, are satisfied. |
Conditional Presence | Explanation |
---|---|
InitialBWP-Only | If SIB1 is broadcast the field is mandatory present in the PDCCH-ConfigCommon of the initial BWP (BWP#0) in ServingCellConfigCommon;it is absent in other BWPs and when sent in system information. If SIB1 is not broadcast and there is an SSB associated to the cell, the field is optionally present, Need M, in the PDCCH-ConfigCommon of the initial BWP (BWP#0) in ServingCellConfigCommon (still with the same setting for all UEs). In other cases, the field is absent. |
OtherBWP | This field is optionally present, Need R, if this BWP is not the initial DL BWP and pagingSearchSpace is configured in this BWP. Otherwise this field is absent. |
The IE PDCCH-ConfigSIB1 is used to configure CORESET#0 and search space#0.
-- ASN1START -- TAG-PDCCH-CONFIGSIB1-START PDCCH-ConfigSIB1 ::= SEQUENCE {controlResourceSetZeroDetermines a common ControlResourceSet (CORESET) with ID #0, see TS 38.213 [13], clause 13.ControlResourceSetZero,searchSpaceZeroDetermines a common search space with ID #0, see TS 38.213 [13], clause 13.SearchSpaceZero } -- TAG-PDCCH-CONFIGSIB1-STOP -- ASN1STOP
PDCCH-ConfigSIB1 field descriptions |
---|
controlResourceSetZero Determines a common ControlResourceSet (CORESET) with ID #0, see TS 38.213 [13], clause 13. |
searchSpaceZero Determines a common search space with ID #0, see TS 38.213 [13], clause 13. |
The IE PDCCH-ServingCellConfig is used to configure UE specific PDCCH parameters applicable across all bandwidth parts of a serving cell.
-- ASN1START -- TAG-PDCCH-SERVINGCELLCONFIG-START PDCCH-ServingCellConfig ::= SEQUENCE {slotFormatIndicatorConfiguration of Slot-Format-Indicators to be monitored in the correspondingly configured PDCCHs of this serving cell.SetupRelease { SlotFormatIndicator } OPTIONAL, -- Need M ... } -- TAG-PDCCH-SERVINGCELLCONFIG-STOP -- ASN1STOP
PDCCH-ServingCellConfig field descriptions |
---|
slotFormatIndicator Configuration of Slot-Format-Indicators to be monitored in the correspondingly configured PDCCHs of this serving cell. |
The IE PDCP-Config is used to set the configurable PDCP parameters for signalling and data radio bearers.
-- ASN1START -- TAG-PDCP-CONFIG-START PDCP-Config ::= SEQUENCE { drb SEQUENCE {discardTimerValue in ms of discardTimer specified in TS 38.323 [5]. Value ms10 corresponds to 10 ms, valuems20 corresponds to 20 ms and so on.ENUMERATED {ms10, ms20, ms30, ms40, ms50, ms60, ms75, ms100, ms150, ms200, ms250, ms300, ms500, ms750, ms1500, infinity} OPTIONAL, -- Cond Setuppdcp-SN-SizeULPDCP sequence number size for uplink, 12 or 18 bits, as specified in TS 38.323 [5]. For SRBs only the value len12bitsis applicable.ENUMERATED {len12bits, len18bits} OPTIONAL, -- Cond Setup2pdcp-SN-SizeDLPDCP sequence number size for downlink, 12 or 18 bits, as specified in TS 38.323 [5]. For SRBs only the value len12bitsis applicable.ENUMERATED {len12bits, len18bits} OPTIONAL, -- Cond Setup2headerCompressionIf rohc is configured, the UE shall apply the configured ROHC profile(s) in both uplink and downlink. If uplinkOnlyROHC is configured, the UE shall apply the configured ROHC profile(s) in uplink (there is no header compression in downlink). ROHC can be configured for any bearer type. The network reconfigures headerCompression only upon reconfiguration involving PDCP re-establishment, and without any drb-ContinueROHC. Network configures headerCompression to notUsed when outOfOrderDelivery is configured.CHOICE { notUsed NULL, rohc SEQUENCE {maxCIDIndicates the value of the MAX_CID parameter as specified in TS 38.323 [5]. The total value of MAX_CIDs across all bearers for the UE should be less than or equal to the value of maxNumberROHC-ContextSessions parameter as indicated by the UE.INTEGER (1..16383) DEFAULT 15, profiles SEQUENCE { profile0x0001 BOOLEAN, profile0x0002 BOOLEAN, profile0x0003 BOOLEAN, profile0x0004 BOOLEAN, profile0x0006 BOOLEAN, profile0x0101 BOOLEAN, profile0x0102 BOOLEAN, profile0x0103 BOOLEAN, profile0x0104 BOOLEAN },drb-ContinueROHCIndicates whether the PDCP entity continues or resets the ROHC header compression protocol during PDCP re-establishment, as specified in TS 38.323 [5]. This field is configured only in case of resuming an RRC connection or reconfiguration with sync, where the PDCP termination point is not changed and the fullConfig is not indicated.ENUMERATED { true } OPTIONAL -- Need N }, uplinkOnlyROHC SEQUENCE {maxCIDIndicates the value of the MAX_CID parameter as specified in TS 38.323 [5]. The total value of MAX_CIDs across all bearers for the UE should be less than or equal to the value of maxNumberROHC-ContextSessions parameter as indicated by the UE.INTEGER (1..16383) DEFAULT 15, profiles SEQUENCE { profile0x0006 BOOLEAN },drb-ContinueROHCIndicates whether the PDCP entity continues or resets the ROHC header compression protocol during PDCP re-establishment, as specified in TS 38.323 [5]. This field is configured only in case of resuming an RRC connection or reconfiguration with sync, where the PDCP termination point is not changed and the fullConfig is not indicated.ENUMERATED { true } OPTIONAL -- Need N }, ... },integrityProtectionIndicates whether or not integrity protection is configured for this radio bearer. The network configures all DRBs with the same PDU-session ID with same value for this field.The value for this field cannot be changed after the DRB is set up.ENUMERATED { enabled } OPTIONAL, -- Cond ConnectedTo5GC1statusReportRequiredFor AM DRBs, indicates whether the DRB is configured to send a PDCP status report in the uplink, as specified in TS 38.323 [5].ENUMERATED { true } OPTIONAL, -- Cond Rlc-AMoutOfOrderDeliveryIndicates whether or not outOfOrderDelivery specified in TS 38.323 [5] is configured.This field should be either always present or always absent, after the radio bearer is established.ENUMERATED { true } OPTIONAL -- Need R } OPTIONAL, -- Cond DRBmoreThanOneRLCThis field configures UL data transmission when more than one RLC entity is associated with the PDCP entity.SEQUENCE {primaryPathIndicates the cell group ID and LCID of the primary RLC entity as specified in TS 38.323 [5], clause 5.2.1 for UL data transmission when more than one RLC entity is associated with the PDCP entity. In this version of the specification, only cell group ID corresponding to MCG is supported for SRBs. The NW indicates cellGroup for split bearers using logical channels in different cell groups. The NW indicates logicalChannel for CA based PDCP duplication, i.e., if both logical channels terminate in the same cell group.SEQUENCE { cellGroup CellGroupId OPTIONAL, -- Need R logicalChannel LogicalChannelIdentity OPTIONAL -- Need R },ul-DataSplitThresholdParameter specified in TS 38.323 [5]. Value b0 corresponds to 0 bytes, value b100 corresponds to 100 bytes, value b200 corresponds to 200 bytes, and so on. The network sets this field to infinity for UEs not supporting splitDRB-withUL-Both-MCG-SCG. If the field is absent when the split bearer is configured for the radio bearer first time, then the default value infinity is applied.UL-DataSplitThreshold OPTIONAL, -- Cond SplitBearerpdcp-DuplicationIndicates whether or not uplink duplication status at the time of receiving this IE is configured and activated as specified in TS 38.323 [5]. The presence of this field indicates that duplication is configured. PDCP duplication is not configured for CA packet duplication of LTE RLC bearer. The value of this field, when the field is present, indicates the state of the duplication at the time of receiving this IE. If set to true, duplication is activated. The value of this field is always true, when configured for a SRB.BOOLEAN OPTIONAL -- Need R } OPTIONAL, -- Cond MoreThanOneRLCt-ReorderingValue in ms of t-Reordering specified in TS 38.323 [5]. Value ms0 corresponds to 0ms, value ms20 corresponds to 20ms, value ms40 corresponds to 40ms, and so on. When the field is absent the UE applies the value infinity.ENUMERATED { ms0, ms1, ms2, ms4, ms5, ms8, ms10, ms15, ms20, ms30, ms40, ms50, ms60, ms80, ms100, ms120, ms140, ms160, ms180, ms200, ms220, ms240, ms260, ms280, ms300, ms500, ms750, ms1000, ms1250, ms1500, ms1750, ms2000, ms2250, ms2500, ms2750, ms3000, spare28, spare27, spare26, spare25, spare24, spare23, spare22, spare21, spare20, spare19, spare18, spare17, spare16, spare15, spare14, spare13, spare12, spare11, spare10, spare09, spare08, spare07, spare06, spare05, spare04, spare03, spare02, spare01 } OPTIONAL, -- Need S ..., [[cipheringDisabledIf included, ciphering is disabled for this DRB regardless of which ciphering algorithm is configured for the SRB/DRBs. The field may only be included if the UE is connected to 5GC. Otherwise the field is absent. The network configures all DRBs with the same PDU-session ID with same value for this field. The value for this field cannot be changed after the DRB is set up.ENUMERATED {true} OPTIONAL -- Cond ConnectedTo5GC ]] } UL-DataSplitThreshold ::= ENUMERATED { b0, b100, b200, b400, b800, b1600, b3200, b6400, b12800, b25600, b51200, b102400, b204800, b409600, b819200, b1228800, b1638400, b2457600, b3276800, b4096000, b4915200, b5734400, b6553600, infinity, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1} -- TAG-PDCP-CONFIG-STOP -- ASN1STOP
PDCP-Config field descriptions |
---|
cipheringDisabled If included, ciphering is disabled for this DRB regardless of which ciphering algorithm is configured for the SRB/DRBs. The field may only be included if the UE is connected to 5GC. Otherwise the field is absent. The network configures all DRBs with the same PDU-session ID with same value for this field. The value for this field cannot be changed after the DRB is set up. |
discardTimer Value in ms of discardTimer specified in TS 38.323 [5]. Value ms10 corresponds to 10 ms, valuems20 corresponds to 20 ms and so on. |
drb-ContinueROHC Indicates whether the PDCP entity continues or resets the ROHC header compression protocol during PDCP re-establishment, as specified in TS 38.323 [5]. This field is configured only in case of resuming an RRC connection or reconfiguration with sync, where the PDCP termination point is not changed and the fullConfig is not indicated. |
headerCompression If rohc is configured, the UE shall apply the configured ROHC profile(s) in both uplink and downlink. If uplinkOnlyROHC is configured, the UE shall apply the configured ROHC profile(s) in uplink (there is no header compression in downlink). ROHC can be configured for any bearer type. The network reconfigures headerCompression only upon reconfiguration involving PDCP re-establishment, and without any drb-ContinueROHC. Network configures headerCompression to notUsed when outOfOrderDelivery is configured. |
integrityProtection Indicates whether or not integrity protection is configured for this radio bearer. The network configures all DRBs with the same PDU-session ID with same value for this field.The value for this field cannot be changed after the DRB is set up. |
maxCID Indicates the value of the MAX_CID parameter as specified in TS 38.323 [5]. The total value of MAX_CIDs across all bearers for the UE should be less than or equal to the value of maxNumberROHC-ContextSessions parameter as indicated by the UE. |
moreThanOneRLC This field configures UL data transmission when more than one RLC entity is associated with the PDCP entity. |
outOfOrderDelivery Indicates whether or not outOfOrderDelivery specified in TS 38.323 [5] is configured.This field should be either always present or always absent, after the radio bearer is established. |
pdcp-Duplication Indicates whether or not uplink duplication status at the time of receiving this IE is configured and activated as specified in TS 38.323 [5]. The presence of this field indicates that duplication is configured. PDCP duplication is not configured for CA packet duplication of LTE RLC bearer. The value of this field, when the field is present, indicates the state of the duplication at the time of receiving this IE. If set to true, duplication is activated. The value of this field is always true, when configured for a SRB. |
pdcp-SN-SizeDL PDCP sequence number size for downlink, 12 or 18 bits, as specified in TS 38.323 [5]. For SRBs only the value len12bitsis applicable. |
pdcp-SN-SizeUL PDCP sequence number size for uplink, 12 or 18 bits, as specified in TS 38.323 [5]. For SRBs only the value len12bitsis applicable. |
primaryPath Indicates the cell group ID and LCID of the primary RLC entity as specified in TS 38.323 [5], clause 5.2.1 for UL data transmission when more than one RLC entity is associated with the PDCP entity. In this version of the specification, only cell group ID corresponding to MCG is supported for SRBs. The NW indicates cellGroup for split bearers using logical channels in different cell groups. The NW indicates logicalChannel for CA based PDCP duplication, i.e., if both logical channels terminate in the same cell group. |
statusReportRequired For AM DRBs, indicates whether the DRB is configured to send a PDCP status report in the uplink, as specified in TS 38.323 [5]. |
t-Reordering Value in ms of t-Reordering specified in TS 38.323 [5]. Value ms0 corresponds to 0ms, value ms20 corresponds to 20ms, value ms40 corresponds to 40ms, and so on. When the field is absent the UE applies the value infinity. |
ul-DataSplitThreshold Parameter specified in TS 38.323 [5]. Value b0 corresponds to 0 bytes, value b100 corresponds to 100 bytes, value b200 corresponds to 200 bytes, and so on. The network sets this field to infinity for UEs not supporting splitDRB-withUL-Both-MCG-SCG. If the field is absent when the split bearer is configured for the radio bearer first time, then the default value infinity is applied. |
Conditional presence | Explanation |
---|---|
DRB | This field is mandatory present when the corresponding DRB is being set up, absent for SRBs. Otherwise this field is optionally present, need M. |
MoreThanOneRLC | This field is mandatory present upon RRC reconfiguration with setup of a PDCP entity for a radio bearer with more than one associated logical channel and upon RRC reconfiguration with the association of an additional logical channel to the PDCP entity. Upon RRC reconfiguration when a PDCP entity is associated with multiple logical channels, this field is optionally present need M. Otherwise, this field is absent. Need R. |
Rlc-AM | For RLC AM, the field is optionally present, need R. Otherwise, the field is absent. |
Setup | The field is mandatory present in case of radio bearer setup. Otherwise the field is optionally present, need M. |
SplitBearer | The field is absent for SRBs. Otherwise, the field is optional present, need M, in case of radio bearer with more than one associated RLC mapped to different cell groups. |
ConnectedTo5GC | The field is optionally present, need R, if the UE is connected to 5GC. Otherwise the field is absent. |
ConnectedTo5GC1 | The field is optionally present, need R, if the UE is connected to NR/5GC. Otherwise the field is absent. |
Setup2 | This field is mandatory present in case for radio bearer setup for RLC-AM and RLC-UM. Otherwise, this field is absent, Need M. |
The PDSCH-Config IE is used to configure the UE specific PDSCH parameters.
-- ASN1START -- TAG-PDSCH-CONFIG-START PDSCH-Config ::= SEQUENCE {dataScramblingIdentityPDSCHIdentifier used to initialize data scrambling (c_init) for PDSCH. If the field is absent, the UE applies the physical cell ID. (see TS 38.211 [16], clause 7.3.1.1).INTEGER (0..1023) OPTIONAL, -- Need Sdmrs-DownlinkForPDSCH-MappingTypeADMRS configuration for PDSCH transmissions using PDSCH mapping type A (chosen dynamically via PDSCH-TimeDomainResourceAllocation). Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B.SetupRelease { DMRS-DownlinkConfig } OPTIONAL, -- Need Mdmrs-DownlinkForPDSCH-MappingTypeBDMRS configuration for PDSCH transmissions using PDSCH mapping type B (chosen dynamically via PDSCH-TimeDomainResourceAllocation). Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B.SetupRelease { DMRS-DownlinkConfig } OPTIONAL, -- Need Mtci-StatesToAddModListA list of Transmission Configuration Indicator (TCI) states indicating a transmission configuration which includes QCL-relationships between the DL RSs in one RS set and the PDSCH DMRS ports (see TS 38.214 [19], clause 5.1.5).SEQUENCE (SIZE(1..maxNrofTCI-States)) OF TCI-State OPTIONAL, -- Need N tci-StatesToReleaseList SEQUENCE (SIZE(1..maxNrofTCI-States)) OF TCI-StateId OPTIONAL, -- Need Nvrb-ToPRB-InterleaverInterleaving unit configurable between 2 and 4 PRBs (see TS 38.211 [16], clause7.3.1.6). When the field is absent, the UE performs non-interleaved VRB-to-PRB mapping.ENUMERATED {n2, n4} OPTIONAL, -- Need SresourceAllocationConfiguration of resource allocation type 0 and resource allocation type 1 for non-fallback DCI (see TS 38.214 [19], clause 5.1.2.2).ENUMERATED { resourceAllocationType0, resourceAllocationType1, dynamicSwitch},pdsch-TimeDomainAllocationListList of time-domain configurations for timing of DL assignment to DL data (see table 5.1.2.1.1-1 in TS 38.214 [19]).SetupRelease { PDSCH-TimeDomainResourceAllocationList } OPTIONAL, -- Need Mpdsch-AggregationFactorNumber of repetitions for data (see TS 38.214 [19], clause 5.1.2.1). When the field is absent the UE applies the value 1.ENUMERATED { n2, n4, n8 } OPTIONAL, -- Need SrateMatchPatternToAddModListResources patterns which the UE should rate match PDSCH around. The UE rate matches around the union of all resources indicated in the rate match patterns (see TS 38.214 [19], clause 5.1.4.1).SEQUENCE (SIZE (1..maxNrofRateMatchPatterns)) OF RateMatchPattern OPTIONAL, -- Need N rateMatchPatternToReleaseList SEQUENCE (SIZE (1..maxNrofRateMatchPatterns)) OF RateMatchPatternId OPTIONAL, -- Need NrateMatchPatternGroup1The IDs of a first group of RateMatchPatterns defined in PDSCH-Config->rateMatchPatternToAddModList (BWP level) or in ServingCellConfig ->rateMatchPatternToAddModList (cell level). These patterns can be activated dynamically by DCI (see TS 38.214 [19], clause 5.1.4.1).RateMatchPatternGroup OPTIONAL, -- Need RrateMatchPatternGroup2The IDs of a second group of RateMatchPatterns defined in PDSCH-Config->rateMatchPatternToAddModList (BWP level) or in ServingCellConfig ->rateMatchPatternToAddModList (cell level). These patterns can be activated dynamically by DCI (see TS 38.214 [19], clause 5.1.4.1).RateMatchPatternGroup OPTIONAL, -- Need Rrbg-SizeSelection between config 1 and config 2 for RBG size for PDSCH. The UE ignores this field if resourceAllocation is set to resourceAllocationType1 (see TS 38.214 [19], clause 5.1.2.2.1).ENUMERATED {config1, config2},mcs-TableIndicates which MCS table the UE shall use for PDSCH. (see TS 38.214 [19], clause 5.1.3.1). If the field is absent the UE applies the value 64QAM.ENUMERATED {qam256, qam64LowSE} OPTIONAL, -- Need SmaxNrofCodeWordsScheduledByDCIMaximum number of code words that a single DCI may schedule. This changes the number of MCS/RV/NDI bits in the DCI message from 1 to 2.ENUMERATED {n1, n2} OPTIONAL, -- Need Rprb-BundlingTypeIndicates the PRB bundle type and bundle size(s) (see TS 38.214 [19], clause 5.1.2.3). If dynamic is chosen, the actual bundleSizeSet1 or bundleSizeSet2 to use is indicated via DCI. Constraints on bundleSize(Set) setting depending on vrb-ToPRB-Interleaver and rbg-Size settings are described in TS 38.214 [19], clause 5.1.2.3. If a bundleSize(Set) value is absent, the UE applies the value n2.CHOICE { staticBundling SEQUENCE { bundleSize ENUMERATED { n4, wideband } OPTIONAL -- Need S }, dynamicBundling SEQUENCE { bundleSizeSet1 ENUMERATED { n4, wideband, n2-wideband, n4-wideband } OPTIONAL, -- Need S bundleSizeSet2 ENUMERATED { n4, wideband } OPTIONAL -- Need S } },zp-CSI-RS-ResourceToAddModListA list of Zero-Power (ZP) CSI-RS resources used for PDSCH rate-matching. Each resource in this list may be referred to from only one type of resource set, i.e., aperiodic, semi-persistent or periodic (see TS 38.214 [19]).SEQUENCE (SIZE (1..maxNrofZP-CSI-RS-Resources)) OF ZP-CSI-RS-Resource OPTIONAL, -- Need N zp-CSI-RS-ResourceToReleaseList SEQUENCE (SIZE (1..maxNrofZP-CSI-RS-Resources)) OF ZP-CSI-RS-ResourceId OPTIONAL, -- Need Naperiodic-ZP-CSI-RS-ResourceSetsToAddModListAddMod/Release lists for configuring aperiodically triggered zero-power CSI-RS resource sets. Each set contains a ZP-CSI-RS-ResourceSetId and the IDs of one or more ZP-CSI-RS-Resources (the actual resources are defined in the zp-CSI-RS-ResourceToAddModList). The network configures the UE with at most 3 aperiodic ZP-CSI-RS-ResourceSets and it uses only the ZP-CSI-RS-ResourceSetId 1 to 3. The network triggers a set by indicating its ZP-CSI-RS-ResourceSetId in the DCI payload. The DCI codepoint '01' triggers the resource set with ZP-CSI-RS-ResourceSetId 1, the DCI codepoint '10' triggers the resource set with ZP-CSI-RS-ResourceSetId 2, and the DCI codepoint '11' triggers the resource set with ZP-CSI-RS-ResourceSetId 3 (see TS 38.214 [19], clause 5.1.4.2)SEQUENCE (SIZE (1..maxNrofZP-CSI-RS-ResourceSets)) OF ZP-CSI-RS-ResourceSet OPTIONAL, -- Need N aperiodic-ZP-CSI-RS-ResourceSetsToReleaseList SEQUENCE (SIZE (1..maxNrofZP-CSI-RS-ResourceSets)) OF ZP-CSI-RS-ResourceSetId OPTIONAL, -- Need Nsp-ZP-CSI-RS-ResourceSetsToAddModListAddMod/Release lists for configuring semi-persistent zero-power CSI-RS resource sets. Each set contains a ZP-CSI-RS-ResourceSetId and the IDs of one or more ZP-CSI-RS-Resources (the actual resources are defined in the zp-CSI-RS-ResourceToAddModList) (see TS 38.214 [19], clause 5.1.4.2).SEQUENCE (SIZE (1..maxNrofZP-CSI-RS-ResourceSets)) OF ZP-CSI-RS-ResourceSet OPTIONAL, -- Need N sp-ZP-CSI-RS-ResourceSetsToReleaseList SEQUENCE (SIZE (1..maxNrofZP-CSI-RS-ResourceSets)) OF ZP-CSI-RS-ResourceSetId OPTIONAL, -- Need Np-ZP-CSI-RS-ResourceSetA set of periodically occurring ZP-CSI-RS-Resources (the actual resources are defined in the zp-CSI-RS-ResourceToAddModList). The network uses the ZP-CSI-RS-ResourceSetId=0 for this set.SetupRelease { ZP-CSI-RS-ResourceSet } OPTIONAL, -- Need M ... } RateMatchPatternGroup ::= SEQUENCE (SIZE (1..maxNrofRateMatchPatternsPerGroup)) OF CHOICE { cellLevel RateMatchPatternId, bwpLevel RateMatchPatternId } -- TAG-PDSCH-CONFIG-STOP -- ASN1STOP
PDSCH-Config field descriptions |
---|
aperiodic-ZP-CSI-RS-ResourceSetsToAddModList AddMod/Release lists for configuring aperiodically triggered zero-power CSI-RS resource sets. Each set contains a ZP-CSI-RS-ResourceSetId and the IDs of one or more ZP-CSI-RS-Resources (the actual resources are defined in the zp-CSI-RS-ResourceToAddModList). The network configures the UE with at most 3 aperiodic ZP-CSI-RS-ResourceSets and it uses only the ZP-CSI-RS-ResourceSetId 1 to 3. The network triggers a set by indicating its ZP-CSI-RS-ResourceSetId in the DCI payload. The DCI codepoint '01' triggers the resource set with ZP-CSI-RS-ResourceSetId 1, the DCI codepoint '10' triggers the resource set with ZP-CSI-RS-ResourceSetId 2, and the DCI codepoint '11' triggers the resource set with ZP-CSI-RS-ResourceSetId 3 (see TS 38.214 [19], clause 5.1.4.2) |
dataScramblingIdentityPDSCH Identifier used to initialize data scrambling (c_init) for PDSCH. If the field is absent, the UE applies the physical cell ID. (see TS 38.211 [16], clause 7.3.1.1). |
dmrs-DownlinkForPDSCH-MappingTypeA DMRS configuration for PDSCH transmissions using PDSCH mapping type A (chosen dynamically via PDSCH-TimeDomainResourceAllocation). Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B. |
dmrs-DownlinkForPDSCH-MappingTypeB DMRS configuration for PDSCH transmissions using PDSCH mapping type B (chosen dynamically via PDSCH-TimeDomainResourceAllocation). Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B. |
maxNrofCodeWordsScheduledByDCI Maximum number of code words that a single DCI may schedule. This changes the number of MCS/RV/NDI bits in the DCI message from 1 to 2. |
mcs-Table Indicates which MCS table the UE shall use for PDSCH. (see TS 38.214 [19], clause 5.1.3.1). If the field is absent the UE applies the value 64QAM. |
pdsch-AggregationFactor Number of repetitions for data (see TS 38.214 [19], clause 5.1.2.1). When the field is absent the UE applies the value 1. |
pdsch-TimeDomainAllocationList List of time-domain configurations for timing of DL assignment to DL data (see table 5.1.2.1.1-1 in TS 38.214 [19]). |
prb-BundlingType Indicates the PRB bundle type and bundle size(s) (see TS 38.214 [19], clause 5.1.2.3). If dynamic is chosen, the actual bundleSizeSet1 or bundleSizeSet2 to use is indicated via DCI. Constraints on bundleSize(Set) setting depending on vrb-ToPRB-Interleaver and rbg-Size settings are described in TS 38.214 [19], clause 5.1.2.3. If a bundleSize(Set) value is absent, the UE applies the value n2. |
p-ZP-CSI-RS-ResourceSet A set of periodically occurring ZP-CSI-RS-Resources (the actual resources are defined in the zp-CSI-RS-ResourceToAddModList). The network uses the ZP-CSI-RS-ResourceSetId=0 for this set. |
rateMatchPatternGroup1 The IDs of a first group of RateMatchPatterns defined in PDSCH-Config->rateMatchPatternToAddModList (BWP level) or in ServingCellConfig ->rateMatchPatternToAddModList (cell level). These patterns can be activated dynamically by DCI (see TS 38.214 [19], clause 5.1.4.1). |
rateMatchPatternGroup2 The IDs of a second group of RateMatchPatterns defined in PDSCH-Config->rateMatchPatternToAddModList (BWP level) or in ServingCellConfig ->rateMatchPatternToAddModList (cell level). These patterns can be activated dynamically by DCI (see TS 38.214 [19], clause 5.1.4.1). |
rateMatchPatternToAddModList Resources patterns which the UE should rate match PDSCH around. The UE rate matches around the union of all resources indicated in the rate match patterns (see TS 38.214 [19], clause 5.1.4.1). |
rbg-Size Selection between config 1 and config 2 for RBG size for PDSCH. The UE ignores this field if resourceAllocation is set to resourceAllocationType1 (see TS 38.214 [19], clause 5.1.2.2.1). |
resourceAllocation Configuration of resource allocation type 0 and resource allocation type 1 for non-fallback DCI (see TS 38.214 [19], clause 5.1.2.2). |
sp-ZP-CSI-RS-ResourceSetsToAddModList AddMod/Release lists for configuring semi-persistent zero-power CSI-RS resource sets. Each set contains a ZP-CSI-RS-ResourceSetId and the IDs of one or more ZP-CSI-RS-Resources (the actual resources are defined in the zp-CSI-RS-ResourceToAddModList) (see TS 38.214 [19], clause 5.1.4.2). |
tci-StatesToAddModList A list of Transmission Configuration Indicator (TCI) states indicating a transmission configuration which includes QCL-relationships between the DL RSs in one RS set and the PDSCH DMRS ports (see TS 38.214 [19], clause 5.1.5). |
vrb-ToPRB-Interleaver Interleaving unit configurable between 2 and 4 PRBs (see TS 38.211 [16], clause7.3.1.6). When the field is absent, the UE performs non-interleaved VRB-to-PRB mapping. |
zp-CSI-RS-ResourceToAddModList A list of Zero-Power (ZP) CSI-RS resources used for PDSCH rate-matching. Each resource in this list may be referred to from only one type of resource set, i.e., aperiodic, semi-persistent or periodic (see TS 38.214 [19]). |
The IE PDSCH-ConfigCommon is used to configure cell specific PDSCH parameters.
-- ASN1START -- TAG-PDSCH-CONFIGCOMMON-START PDSCH-ConfigCommon ::= SEQUENCE {pdsch-TimeDomainAllocationListList of time-domain configurations for timing of DL assignment to DL data (see table 5.1.2.1.1-1 in TS 38.214 [19]).PDSCH-TimeDomainResourceAllocationList OPTIONAL, -- Need R ... } -- TAG-PDSCH-CONFIGCOMMON-STOP -- ASN1STOP
PDSCH-ConfigCommon field descriptions |
---|
pdsch-TimeDomainAllocationList List of time-domain configurations for timing of DL assignment to DL data (see table 5.1.2.1.1-1 in TS 38.214 [19]). |
The IE PDSCH-ServingCellConfig is used to configure UE specific PDSCH parameters that are common across the UE's BWPs of one serving cell.
-- ASN1START -- TAG-PDSCH-SERVINGCELLCONFIG-START PDSCH-ServingCellConfig ::= SEQUENCE {codeBlockGroupTransmissionEnables and configures code-block-group (CBG) based transmission (see TS 38.213 [13], clause 9.1.1). Network does not configure for a UE both spatial bundling of HARQ ACKs and codeBlockGroupTransmission within the same cell group.SetupRelease { PDSCH-CodeBlockGroupTransmission } OPTIONAL, -- Need MxOverheadAccounts for overhead from CSI-RS, CORESET, etc. If the field is absent, the UE applies value xOh0 (see TS 38.214 [19], clause 5.1.3.2).ENUMERATED { xOh6, xOh12, xOh18 } OPTIONAL, -- Need SnrofHARQ-ProcessesForPDSCHThe number of HARQ processes to be used on the PDSCH of a serving cell. Valuen2 corresponds to 2 HARQ processes, value n4 to 4 HARQ processes, and so on. If the field is absent, the UE uses 8 HARQ processes (see TS 38.214 [19], clause 5.1).ENUMERATED {n2, n4, n6, n10, n12, n16} OPTIONAL, -- Need Spucch-CellThe ID of the serving cell (of the same cell group) to use for PUCCH. If the field is absent, the UE sends the HARQ feedback on the PUCCH of the SpCell of this cell group, or on this serving cell if it is a PUCCH SCell.ServCellIndex OPTIONAL, -- Cond SCellAddOnly ..., [[maxMIMO-LayersIndicates the maximum number of MIMO layers to be used for PDSCH in all BWPs of this serving cell. (see TS 38.212 [17], clause 5.4.2.1).INTEGER (1..8) OPTIONAL, -- Need MprocessingType2EnabledEnables configuration of advanced processing time capability 2 for PDSCH (see 38.214 [19], clause 5.3).BOOLEAN OPTIONAL -- Need M ]] } PDSCH-CodeBlockGroupTransmission ::= SEQUENCE {maxCodeBlockGroupsPerTransportBlockMaximum number of code-block-groups (CBGs) per TB. In case of multiple CW, the maximum CBG is 4 (see TS 38.213 [13], clause 9.1.1).ENUMERATED {n2, n4, n6, n8},codeBlockGroupFlushIndicatorIndicates whether CBGFI for CBG based (re)transmission in DL is enabled (true). (see TS 38.212 [17], clause 7.3.1.2.2).BOOLEAN, ... } -- TAG-PDSCH-SERVINGCELLCONFIG-STOP -- ASN1STOP
PDSCH-CodeBlockGroupTransmission field descriptions |
---|
codeBlockGroupFlushIndicator Indicates whether CBGFI for CBG based (re)transmission in DL is enabled (true). (see TS 38.212 [17], clause 7.3.1.2.2). |
maxCodeBlockGroupsPerTransportBlock Maximum number of code-block-groups (CBGs) per TB. In case of multiple CW, the maximum CBG is 4 (see TS 38.213 [13], clause 9.1.1). |
PDSCH-ServingCellConfig field descriptions |
---|
codeBlockGroupTransmission Enables and configures code-block-group (CBG) based transmission (see TS 38.213 [13], clause 9.1.1). Network does not configure for a UE both spatial bundling of HARQ ACKs and codeBlockGroupTransmission within the same cell group. |
maxMIMO-Layers Indicates the maximum number of MIMO layers to be used for PDSCH in all BWPs of this serving cell. (see TS 38.212 [17], clause 5.4.2.1). |
nrofHARQ-ProcessesForPDSCH The number of HARQ processes to be used on the PDSCH of a serving cell. Valuen2 corresponds to 2 HARQ processes, value n4 to 4 HARQ processes, and so on. If the field is absent, the UE uses 8 HARQ processes (see TS 38.214 [19], clause 5.1). |
processingType2Enabled Enables configuration of advanced processing time capability 2 for PDSCH (see 38.214 [19], clause 5.3). |
pucch-Cell The ID of the serving cell (of the same cell group) to use for PUCCH. If the field is absent, the UE sends the HARQ feedback on the PUCCH of the SpCell of this cell group, or on this serving cell if it is a PUCCH SCell. |
xOverhead Accounts for overhead from CSI-RS, CORESET, etc. If the field is absent, the UE applies value xOh0 (see TS 38.214 [19], clause 5.1.3.2). |
Conditional Presence | Explanation |
---|---|
SCellAddOnly | It is optionally present, Need S, for (non-PUCCH) SCells when adding a new SCell. The field is absent, Need M, when reconfiguring SCells. The field is also absent for the SpCells as well as for a PUCCH SCell. |
The IE PDSCH-TimeDomainResourceAllocation is used to configure a time domain relation between PDCCH and PDSCH. The PDSCH-TimeDomainResourceAllocationList contains one or more of such PDSCH-TimeDomainResourceAllocations. The network indicates in the DL assignment which of the configured time domain allocations the UE shall apply for that DL assignment. The UE determines the bit width of the DCI field based on the number of entries in the PDSCH-TimeDomainResourceAllocationList. Value 0 in the DCI field refers to the first element in this list, value 1 in the DCI field refers to the second element in this list, and so on.
-- ASN1START -- TAG-PDSCH-TIMEDOMAINRESOURCEALLOCATIONLIST-START PDSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1..maxNrofDL-Allocations)) OF PDSCH-TimeDomainResourceAllocation PDSCH-TimeDomainResourceAllocation ::= SEQUENCE {k0Slot offset between DCI and its scheduled PDSCH (see TS 38.214 [19], clause 5.1.2.1) When the field is absent the UE applies the value 0.INTEGER(0..32) OPTIONAL, -- Need SmappingTypePDSCH mapping type. (see TS 38.214 [19], clause 5.3).ENUMERATED {typeA, typeB},startSymbolAndLengthAn index giving valid combinations of start symbol and length (jointly encoded) as start and length indicator (SLIV). The network configures the field so that the allocation does not cross the slot boundary (see TS 38.214 [19], clause 5.1.2.1).INTEGER (0..127) } -- TAG-PDSCH-TIMEDOMAINRESOURCEALLOCATIONLIST-STOP -- ASN1STOP
PDSCH-TimeDomainResourceAllocation field descriptions |
---|
k0 Slot offset between DCI and its scheduled PDSCH (see TS 38.214 [19], clause 5.1.2.1) When the field is absent the UE applies the value 0. |
mappingType PDSCH mapping type. (see TS 38.214 [19], clause 5.3). |
startSymbolAndLength An index giving valid combinations of start symbol and length (jointly encoded) as start and length indicator (SLIV). The network configures the field so that the allocation does not cross the slot boundary (see TS 38.214 [19], clause 5.1.2.1). |
The IE PHR-Config is used to configure parameters for power headroom reporting.
-- ASN1START -- TAG-PHR-CONFIG-START PHR-Config ::= SEQUENCE {phr-PeriodicTimerValue in number of subframes for PHR reporting as specified in TS 38.321 [3]. Value sf10 corresponds to 10 subframes, value sf20 corresponds to 20 subframes, and so on.ENUMERATED {sf10, sf20, sf50, sf100, sf200,sf500, sf1000, infinity},phr-ProhibitTimerValue in number of subframes for PHR reporting as specified in TS 38.321 [3]. Valuesf0 corresponds to 0 subframe, value sf10 corresponds to 10 subframes, value sf20 corresponds to 20 subframes, and so on.ENUMERATED {sf0, sf10, sf20, sf50, sf100,sf200, sf500, sf1000},phr-Tx-PowerFactorChangeValue in dB for PHR reporting as specified in TS 38.321 [3]. Value dB1 corresponds to 1 dB, dB3 corresponds to 3 dB and so on. The same value applies for each serving cell (although the associated functionality is performed independently for each cell).ENUMERATED {dB1, dB3, dB6, infinity},multiplePHRIndicates if power headroom shall be reported using the Single Entry PHR MAC control element or Multiple Entry PHR MAC control element defined in TS 38.321 [3]. True means to use Multiple Entry PHR MAC control element and False means to use the Single Entry PHR MAC control element defined in TS 38.321 [3].The network configures this field to true for MR-DC and UL CA for NR, and to false in all other cases.BOOLEAN,dummyThis field is not used in this version of the specification and the UE ignores the received value.BOOLEAN,phr-Type2OtherCellIf set to true, the UE shall report a PHR type 2 for the SpCell of the other MAC entity. See TS 38.321 [3], clause 5.4.6. Network sets this field to false if the UE is not configured with an E-UTRA MAC entity.BOOLEAN,phr-ModeOtherCGIndicates the mode (i.e. real or virtual) used for the PHR of the activated cells that are part of the other Cell Group (i.e. MCG or SCG), when DC is configured. If the UE is configured with only one cell group (no DC), it ignores the field.ENUMERATED {real, virtual}, ... } -- TAG-PHR-CONFIG-STOP -- ASN1STOP
PHR-Config field descriptions |
---|
dummy This field is not used in this version of the specification and the UE ignores the received value. |
multiplePHR Indicates if power headroom shall be reported using the Single Entry PHR MAC control element or Multiple Entry PHR MAC control element defined in TS 38.321 [3]. True means to use Multiple Entry PHR MAC control element and False means to use the Single Entry PHR MAC control element defined in TS 38.321 [3].The network configures this field to true for MR-DC and UL CA for NR, and to false in all other cases. |
phr-ModeOtherCG Indicates the mode (i.e. real or virtual) used for the PHR of the activated cells that are part of the other Cell Group (i.e. MCG or SCG), when DC is configured. If the UE is configured with only one cell group (no DC), it ignores the field. |
phr-PeriodicTimer Value in number of subframes for PHR reporting as specified in TS 38.321 [3]. Value sf10 corresponds to 10 subframes, value sf20 corresponds to 20 subframes, and so on. |
phr-ProhibitTimer Value in number of subframes for PHR reporting as specified in TS 38.321 [3]. Valuesf0 corresponds to 0 subframe, value sf10 corresponds to 10 subframes, value sf20 corresponds to 20 subframes, and so on. |
phr-Tx-PowerFactorChange Value in dB for PHR reporting as specified in TS 38.321 [3]. Value dB1 corresponds to 1 dB, dB3 corresponds to 3 dB and so on. The same value applies for each serving cell (although the associated functionality is performed independently for each cell). |
phr-Type2OtherCell If set to true, the UE shall report a PHR type 2 for the SpCell of the other MAC entity. See TS 38.321 [3], clause 5.4.6. Network sets this field to false if the UE is not configured with an E-UTRA MAC entity. |
The PhysCellId identifies the physical cell identity (PCI).
The IE PhysicalCellGroupConfig is used to configure cell-group specific L1 parameters.
-- ASN1START -- TAG-PHYSICALCELLGROUPCONFIG-START PhysicalCellGroupConfig ::= SEQUENCE {harq-ACK-SpatialBundlingPUCCHEnables spatial bundling of HARQ ACKs. It is configured per cell group (i.e. for all the cells within the cell group) for PUCCH reporting of HARQ-ACK. It is only applicable when more than 4 layers are possible to schedule. When the field is absent, the spatial bundling is disabled (see TS 38.213 [13], clause 9.1.2.1). Network does not configure for a UE both spatial bundling of HARQ ACKs and codeBlockGroupTransmission within the same cell group.ENUMERATED {true} OPTIONAL, -- Need Sharq-ACK-SpatialBundlingPUSCHEnables spatial bundling of HARQ ACKs. It is configured per cell group (i.e. for all the cells within the cell group) for PUSCH reporting of HARQ-ACK. It is only applicable when more than 4 layers are possible to schedule. When the field is absent, the spatial bundling is disabled (see TS 38.213 [13], clauses 9.1.2.2 and 9.1.3.2).Network does not configure for a UE both spatial bundling of HARQ ACKs and codeBlockGroupTransmission within the same cell group.ENUMERATED {true} OPTIONAL, -- Need Sp-NR-FR1The maximum total transmit power to be used by the UE in this NR cell group across all serving cells in frequency range 1 (FR1). The maximum transmit power that the UE may use may be additionally limited by p-Max (configured in FrequencyInfoUL) and by p-UE-FR1 (configured total for all serving cells operating on FR1).P-Max OPTIONAL, -- Need Rpdsch-HARQ-ACK-CodebookThe PDSCH HARQ-ACK codebook is either semi-static or dynamic. This is applicable to both CA and none CA operation (see TS 38.213 [13], clauses 9.1.2 and 9.1.3).ENUMERATED {semiStatic, dynamic},tpc-SRS-RNTIRNTI used for SRS TPC commands on DCI (see TS 38.213 [13], clause 10.1).RNTI-Value OPTIONAL, -- Need Rtpc-PUCCH-RNTIRNTI used for PUCCH TPC commands on DCI (see TS 38.213 [13], clause 10.1).RNTI-Value OPTIONAL, -- Need Rtpc-PUSCH-RNTIRNTI used for PUSCH TPC commands on DCI (see TS 38.213 [13], clause 10.1).RNTI-Value OPTIONAL, -- Need Rsp-CSI-RNTIRNTI for Semi-Persistent CSI reporting on PUSCH (see CSI-ReportConfig) (see TS 38.214 [19], clause 5.2.1.5.2). Network always configures the UE with a value forthis field when at least one CSI-ReportConfig with reportConfigType set to semiPersistentOnPUSCH is configured.RNTI-Value OPTIONAL, -- Need Rcs-RNTIRNTI value for downlink SPS (see SPS-Config) and uplink configured grant (see ConfiguredGrantConfig).SetupRelease { RNTI-Value } OPTIONAL, -- Need M ..., [[mcs-C-RNTIRNTI to indicate use of qam64LowSE for grant-based transmissions. When the mcs-C-RNTI is configured, RNTI scrambling of DCI CRC is used to choose the corresponding MCS table.RNTI-Value OPTIONAL, -- Need Rp-UE-FR1The maximum total transmit power to be used by the UE across all serving cells in frequency range 1 (FR1) across all cell groups. The maximum transmit power that the UE may use may be additionally limited by p-Max (configured in FrequencyInfoUL) and by p-NR-FR1 (configured for the cell group).P-Max OPTIONAL -- Cond MCG-Only ]], [[xScaleThe UE is allowed to drop NR only if the power scaling applied to NR results in a difference between scaled and unscaled NR UL of more than xScale dB (see TS 38.213 [13]). If the value is not configured for dynamic power sharing, the UE assumes default value of 6 dB.ENUMERATED {dB0, dB6, spare2, spare1} OPTIONAL -- Cond SCG-Only ]], [[pdcch-BlindDetectionIndicates the reference number of cells for PDCCH blind detection for the CG. Network configures the field for each CG when the UE is in NR DC and sets the value in accordance with the constraints specified in TS 38.213 [13]. The network configures pdcch-BlindDetection only if the UE is in NR-DC.SetupRelease { PDCCH-BlindDetection } OPTIONAL -- Need M ]] } PDCCH-BlindDetection ::= INTEGER (1..15) -- TAG-PHYSICALCELLGROUPCONFIG-STOP -- ASN1STOP
PhysicalCellGroupConfig field descriptions |
---|
cs-RNTI RNTI value for downlink SPS (see SPS-Config) and uplink configured grant (see ConfiguredGrantConfig). |
harq-ACK-SpatialBundlingPUCCH Enables spatial bundling of HARQ ACKs. It is configured per cell group (i.e. for all the cells within the cell group) for PUCCH reporting of HARQ-ACK. It is only applicable when more than 4 layers are possible to schedule. When the field is absent, the spatial bundling is disabled (see TS 38.213 [13], clause 9.1.2.1). Network does not configure for a UE both spatial bundling of HARQ ACKs and codeBlockGroupTransmission within the same cell group. |
harq-ACK-SpatialBundlingPUSCH Enables spatial bundling of HARQ ACKs. It is configured per cell group (i.e. for all the cells within the cell group) for PUSCH reporting of HARQ-ACK. It is only applicable when more than 4 layers are possible to schedule. When the field is absent, the spatial bundling is disabled (see TS 38.213 [13], clauses 9.1.2.2 and 9.1.3.2).Network does not configure for a UE both spatial bundling of HARQ ACKs and codeBlockGroupTransmission within the same cell group. |
mcs-C-RNTI RNTI to indicate use of qam64LowSE for grant-based transmissions. When the mcs-C-RNTI is configured, RNTI scrambling of DCI CRC is used to choose the corresponding MCS table. |
pdcch-BlindDetection Indicates the reference number of cells for PDCCH blind detection for the CG. Network configures the field for each CG when the UE is in NR DC and sets the value in accordance with the constraints specified in TS 38.213 [13]. The network configures pdcch-BlindDetection only if the UE is in NR-DC. |
p-NR-FR1 The maximum total transmit power to be used by the UE in this NR cell group across all serving cells in frequency range 1 (FR1). The maximum transmit power that the UE may use may be additionally limited by p-Max (configured in FrequencyInfoUL) and by p-UE-FR1 (configured total for all serving cells operating on FR1). |
p-UE-FR1 The maximum total transmit power to be used by the UE across all serving cells in frequency range 1 (FR1) across all cell groups. The maximum transmit power that the UE may use may be additionally limited by p-Max (configured in FrequencyInfoUL) and by p-NR-FR1 (configured for the cell group). |
pdsch-HARQ-ACK-Codebook The PDSCH HARQ-ACK codebook is either semi-static or dynamic. This is applicable to both CA and none CA operation (see TS 38.213 [13], clauses 9.1.2 and 9.1.3). |
sp-CSI-RNTI RNTI for Semi-Persistent CSI reporting on PUSCH (see CSI-ReportConfig) (see TS 38.214 [19], clause 5.2.1.5.2). Network always configures the UE with a value forthis field when at least one CSI-ReportConfig with reportConfigType set to semiPersistentOnPUSCH is configured. |
tpc-PUCCH-RNTI RNTI used for PUCCH TPC commands on DCI (see TS 38.213 [13], clause 10.1). |
tpc-PUSCH-RNTI RNTI used for PUSCH TPC commands on DCI (see TS 38.213 [13], clause 10.1). |
tpc-SRS-RNTI RNTI used for SRS TPC commands on DCI (see TS 38.213 [13], clause 10.1). |
xScale The UE is allowed to drop NR only if the power scaling applied to NR results in a difference between scaled and unscaled NR UL of more than xScale dB (see TS 38.213 [13]). If the value is not configured for dynamic power sharing, the UE assumes default value of 6 dB. |
Conditional Presence | Explanation |
---|---|
MCG-Only | This field is optionally present, Need R, in the PhysicalCellGroupConfig of the MCG. It is absent otherwise. |
SCG-Only | This field is optionally present, Need S, in the PhysicalCellGroupConfig of the SCG in (NG)EN-DC as defined in TS 38.213 [13]. It is absent otherwise. |
The IE PLMN-Identity identifies a Public Land Mobile Network. Further information regarding how to set the IE is specified in TS 23.003 [21].
-- ASN1START -- TAG-PLMN-IDENTITY-START PLMN-Identity ::= SEQUENCE {mccThe first element contains the first MCC digit, the second element the second MCC digit and so on. If the field is absent, it takes the same value as the mcc of the immediately preceding IE PLMN-Identity. See TS 23.003 [21].MCC OPTIONAL, -- Cond MCCmncThe first element contains the first MNC digit, the second element the second MNC digit and so on. See TS 23.003 [21].MNC } MCC ::= SEQUENCE (SIZE (3)) OF MCC-MNC-Digit MNC ::= SEQUENCE (SIZE (2..3)) OF MCC-MNC-Digit MCC-MNC-Digit ::= INTEGER (0..9) -- TAG-PLMN-IDENTITY-STOP -- ASN1STOP
PLMN-Identity field descriptions |
---|
mcc The first element contains the first MCC digit, the second element the second MCC digit and so on. If the field is absent, it takes the same value as the mcc of the immediately preceding IE PLMN-Identity. See TS 23.003 [21]. |
mnc The first element contains the first MNC digit, the second element the second MNC digit and so on. See TS 23.003 [21]. |
Conditional Presence | Explanation |
---|---|
MCC | This field is mandatory present when PLMN-Identity is not used in a list or if it is the first entry of PLMN-Identity in a list. Otherwise it is optionally present, Need S. |
The IE PLMN-IdentityInfoList includes a list of PLMN identity information.
-- ASN1START -- TAG-PLMN-IDENTITYINFOLIST-START PLMN-IdentityInfoList ::= SEQUENCE (SIZE (1..maxPLMN)) OF PLMN-IdentityInfo PLMN-IdentityInfo ::= SEQUENCE { plmn-IdentityList SEQUENCE (SIZE (1..maxPLMN)) OF PLMN-Identity,trackingAreaCodeIndicates Tracking Area Code to which the cell indicated by cellIdentity field belongs. The absence of the field indicates that the cell only supports PSCell/SCell functionality (per PLMN).TrackingAreaCode OPTIONAL, -- Need R ranac RAN-AreaCode OPTIONAL, -- Need R cellIdentity CellIdentity,cellReservedForOperatorUseIndicates whether the cell is reserved for operator use (per PLMN), as defined in TS 38.304 [20].ENUMERATED {reserved, notReserved}, ... } -- TAG-PLMN-IDENTITYINFOLIST-STOP -- ASN1STOP
PLMN-IdentityInfo field descriptions |
---|
cellReservedForOperatorUse Indicates whether the cell is reserved for operator use (per PLMN), as defined in TS 38.304 [20]. |
trackingAreaCode Indicates Tracking Area Code to which the cell indicated by cellIdentity field belongs. The absence of the field indicates that the cell only supports PSCell/SCell functionality (per PLMN). |
The IE PRB-Id identifies a Physical Resource Block (PRB) position within a carrier.
The IE PTRS-DownlinkConfig is used to configure downlink phase tracking reference signals (PTRS) (see TS 38.214 [19] clause 5.1.6.3)
-- ASN1START -- TAG-PTRS-DOWNLINKCONFIG-START PTRS-DownlinkConfig ::= SEQUENCE {frequencyDensityPresence and frequency density of DL PT-RS as a function of Scheduled BW. If the field is absent, the UE uses K_PT-RS = 2 (see TS 38.214 [19], clause 5.1.6.3, table 5.1.6.3-2).SEQUENCE (SIZE (2)) OF INTEGER (1..276) OPTIONAL, -- Need StimeDensityPresence and time density of DL PT-RS as a function of MCS. The value 29 is only applicable for MCS Table 5.1.3.1-1 (TS 38.214 [19]). If the field is absent, the UE uses L_PT-RS = 1 (see TS 38.214 [19], clause 5.1.6.3, table 5.1.6.3-1).SEQUENCE (SIZE (3)) OF INTEGER (0..29) OPTIONAL, -- Need Sepre-RatioEPRE ratio between PTRS and PDSCH. Value 0 corresponds to the codepoint "00" in table 4.1-2. Value 1 corresponds to codepoint "01", and so on. If the field is not provided, the UE applies value 0 (see TS 38.214 [19], clause 4.1).INTEGER (0..3) OPTIONAL, -- Need SresourceElementOffsetIndicates the subcarrier offset for DL PTRS. If the field is absent, the UE applies the value offset00 (see TS 38.211 [16], clause7.4.1.2.2).ENUMERATED { offset01, offset10, offset11 } OPTIONAL, -- Need S ... } -- TAG-PTRS-DOWNLINKCONFIG-STOP -- ASN1STOP
PTRS-DownlinkConfig field descriptions |
---|
epre-Ratio EPRE ratio between PTRS and PDSCH. Value 0 corresponds to the codepoint "00" in table 4.1-2. Value 1 corresponds to codepoint "01", and so on. If the field is not provided, the UE applies value 0 (see TS 38.214 [19], clause 4.1). |
frequencyDensity Presence and frequency density of DL PT-RS as a function of Scheduled BW. If the field is absent, the UE uses K_PT-RS = 2 (see TS 38.214 [19], clause 5.1.6.3, table 5.1.6.3-2). |
resourceElementOffset Indicates the subcarrier offset for DL PTRS. If the field is absent, the UE applies the value offset00 (see TS 38.211 [16], clause7.4.1.2.2). |
timeDensity Presence and time density of DL PT-RS as a function of MCS. The value 29 is only applicable for MCS Table 5.1.3.1-1 (TS 38.214 [19]). If the field is absent, the UE uses L_PT-RS = 1 (see TS 38.214 [19], clause 5.1.6.3, table 5.1.6.3-1). |
The IE PTRS-UplinkConfig is used to configure uplink Phase-Tracking-Reference-Signals (PTRS).
-- ASN1START -- TAG-PTRS-UPLINKCONFIG-START PTRS-UplinkConfig ::= SEQUENCE {transformPrecoderDisabledConfiguration of UL PTRS without transform precoder (with CP-OFDM).SEQUENCE {frequencyDensityPresence and frequency density of UL PT-RS for CP-OFDM waveform as a function of scheduled BW If the field is absent, the UE uses K_PT-RS = 2 (see TS 38.214 [19], clause 6.1).SEQUENCE (SIZE (2)) OF INTEGER (1..276) OPTIONAL, -- Need StimeDensityPresence and time density of UL PT-RS for CP-OFDM waveform as a function of MCS If the field is absent, the UE uses L_PT-RS = 1 (see TS 38.214 [19], clause 6.1).SEQUENCE (SIZE (3)) OF INTEGER (0..29) OPTIONAL, -- Need SmaxNrofPortsThe maximum number of UL PTRS ports for CP-OFDM (see TS 38.214 [19], clause 6.2.3.1).ENUMERATED {n1, n2},resourceElementOffsetIndicates the subcarrier offset for UL PTRS for CP-OFDM. If the field is absent, the UE applies the value offset00 (see TS 38.211 [16], clause 6.4.1.2.2).ENUMERATED {offset01, offset10, offset11 } OPTIONAL, -- Need Sptrs-PowerUL PTRS power boosting factor per PTRS port (see TS 38.214 [19], clause 6.1, table 6.2.3.1.3).ENUMERATED {p00, p01, p10, p11} } OPTIONAL, -- Need RtransformPrecoderEnabledConfiguration of UL PTRS with transform precoder (DFT-S-OFDM).SEQUENCE {sampleDensitySample density of PT-RS for DFT-s-OFDM, pre-DFT, indicating a set of thresholds T={NRBn, n=0,1,2,3,4}, that indicates dependency between presence of PT-RS and scheduled BW and the values of X and K the UE should use depending on the scheduled BW, see TS 38.214 [19], clause 6.1, table 6.2.3.2-1.SEQUENCE (SIZE (5)) OF INTEGER (1..276),timeDensityTransformPrecodingTime density (OFDM symbol level) of PT-RS for DFT-s-OFDM. If the field is absent, the UE applies value d1 (see TS 38.214 [19], clause 6.1).ENUMERATED {d2} OPTIONAL -- Need S } OPTIONAL, -- Need R ... } -- TAG-PTRS-UPLINKCONFIG-STOP -- ASN1STOP
PTRS-UplinkConfig field descriptions |
---|
frequencyDensity Presence and frequency density of UL PT-RS for CP-OFDM waveform as a function of scheduled BW If the field is absent, the UE uses K_PT-RS = 2 (see TS 38.214 [19], clause 6.1). |
maxNrofPorts The maximum number of UL PTRS ports for CP-OFDM (see TS 38.214 [19], clause 6.2.3.1). |
ptrs-Power UL PTRS power boosting factor per PTRS port (see TS 38.214 [19], clause 6.1, table 6.2.3.1.3). |
resourceElementOffset Indicates the subcarrier offset for UL PTRS for CP-OFDM. If the field is absent, the UE applies the value offset00 (see TS 38.211 [16], clause 6.4.1.2.2). |
sampleDensity Sample density of PT-RS for DFT-s-OFDM, pre-DFT, indicating a set of thresholds T={NRBn, n=0,1,2,3,4}, that indicates dependency between presence of PT-RS and scheduled BW and the values of X and K the UE should use depending on the scheduled BW, see TS 38.214 [19], clause 6.1, table 6.2.3.2-1. |
timeDensity Presence and time density of UL PT-RS for CP-OFDM waveform as a function of MCS If the field is absent, the UE uses L_PT-RS = 1 (see TS 38.214 [19], clause 6.1). |
timeDensityTransformPrecoding Time density (OFDM symbol level) of PT-RS for DFT-s-OFDM. If the field is absent, the UE applies value d1 (see TS 38.214 [19], clause 6.1). |
transformPrecoderDisabled Configuration of UL PTRS without transform precoder (with CP-OFDM). |
transformPrecoderEnabled Configuration of UL PTRS with transform precoder (DFT-S-OFDM). |
The IE PUCCH-Config is used to configure UE specific PUCCH parameters (per BWP).
-- ASN1START -- TAG-PUCCH-CONFIG-START PUCCH-Config ::= SEQUENCE { resourceSetToAddModList SEQUENCE (SIZE (1..maxNrofPUCCH-ResourceSets)) OF PUCCH-ResourceSet OPTIONAL, -- Need N resourceSetToReleaseList SEQUENCE (SIZE (1..maxNrofPUCCH-ResourceSets)) OF PUCCH-ResourceSetId OPTIONAL, -- Need N resourceToAddModList SEQUENCE (SIZE (1..maxNrofPUCCH-Resources)) OF PUCCH-Resource OPTIONAL, -- Need N resourceToReleaseList SEQUENCE (SIZE (1..maxNrofPUCCH-Resources)) OF PUCCH-ResourceId OPTIONAL, -- Need Nformat1Parameters that are common for all PUCCH resources of format 1.SetupRelease { PUCCH-FormatConfig } OPTIONAL, -- Need Mformat2Parameters that are common for all PUCCH resources of format 2.SetupRelease { PUCCH-FormatConfig } OPTIONAL, -- Need Mformat3Parameters that are common for all PUCCH resources of format 3.SetupRelease { PUCCH-FormatConfig } OPTIONAL, -- Need Mformat4Parameters that are common for all PUCCH resources of format 4.SetupRelease { PUCCH-FormatConfig } OPTIONAL, -- Need M schedulingRequestResourceToAddModList SEQUENCE (SIZE (1..maxNrofSR-Resources)) OF SchedulingRequestResourceConfig OPTIONAL, -- Need N schedulingRequestResourceToReleaseList SEQUENCE (SIZE (1..maxNrofSR-Resources)) OF SchedulingRequestResourceId OPTIONAL, -- Need N multi-CSI-PUCCH-ResourceList SEQUENCE (SIZE (1..2)) OF PUCCH-ResourceId OPTIONAL, -- Need Mdl-DataToUL-ACKList of timing for given PDSCH to the DL ACK (see TS 38.213 [13], clause 9.1.2).SEQUENCE (SIZE (1..8)) OF INTEGER (0..15) OPTIONAL, -- Need MspatialRelationInfoToAddModListConfiguration of the spatial relation between a reference RS and PUCCH. Reference RS can be SSB/CSI-RS/SRS. If the list has more than one element, MAC-CE selects a single element (see TS 38.321 [3], clause5.18.8 and TS 38.213 [13], clause 9.2.2).SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos)) OF PUCCH-SpatialRelationInfo OPTIONAL, -- Need N spatialRelationInfoToReleaseList SEQUENCE (SIZE (1..maxNrofSpatialRelationInfos)) OF PUCCH-SpatialRelationInfoId OPTIONAL, -- Need N pucch-PowerControl PUCCH-PowerControl OPTIONAL, -- Need M ... } PUCCH-FormatConfig ::= SEQUENCE {interslotFrequencyHoppingIf the field is present, the UE enables inter-slot frequency hopping when PUCCH Format 1, 3 or 4 is repeated over multiple slots. For long PUCCH over multiple slots, the intra and inter slot frequency hopping cannot be enabled at the same time for a UE. The field is not applicable for format 2. See TS 38.213 [13], clause 9.2.6.ENUMERATED {enabled} OPTIONAL, -- Need RadditionalDMRSIf the field is present, the UE enables 2 DMRS symbols per hop of a PUCCH Format 3 or 4 if both hops are more than X symbols when FH is enabled (X=4). And it enables 4 DMRS symbols for a PUCCH Format 3 or 4 with more than 2X+1 symbols when FH is disabled (X=4). The field is not applicable for format 1 and 2. See TS 38.213 [13], clause 9.2.2.ENUMERATED {true} OPTIONAL, -- Need RmaxCodeRateMax coding rate to determine how to feedback UCI on PUCCH for format 2, 3 or 4. The field is not applicable for format 1. See TS 38.213 [13], clause 9.2.5.PUCCH-MaxCodeRate OPTIONAL, -- Need RnrofSlotsNumber of slots with the same PUCCH F1, F3 or F4. When the field is absent the UE applies the value n1. The field is not applicable for format 2. See TS 38.213 [13], clause 9.2.6.ENUMERATED {n2,n4,n8} OPTIONAL, -- Need Spi2BPSKIf the field is present, the UE uses pi/2 BPSK for UCI symbols instead of QPSK for PUCCH. The field is not applicable for format 1 and 2. See TS 38.213 [13], clause 9.2.5.ENUMERATED {enabled} OPTIONAL, -- Need RsimultaneousHARQ-ACK-CSIIf the field is present, the UE uses simultaneous transmission of CSI and HARQ-ACK feedback with or without SR with PUCCH Format 2, 3 or 4. See TS 38.213 [13], clause 9.2.5. When the field is absent the UE applies the value off.The field is not applicable for format 1.ENUMERATED {true} OPTIONAL -- Need R } PUCCH-MaxCodeRate ::= ENUMERATED {zeroDot08, zeroDot15, zeroDot25, zeroDot35, zeroDot45, zeroDot60, zeroDot80} -- A set with one or more PUCCH resources PUCCH-ResourceSet ::= SEQUENCE { pucch-ResourceSetId PUCCH-ResourceSetId,resourceListPUCCH resources of format0 and format1 are only allowed in the first PUCCH resource set, i.e., in a PUCCH-ResourceSet with pucch-ResourceSetId = 0. This set may contain between 1 and 32 resources. PUCCH resources of format2, format3 and format4 are only allowed in a PUCCH-ResourceSet with pucch-ResourceSetId > 0. If present, these sets contain between 1 and 8 resources each. The UE chooses a PUCCH-Resource from this list as specified in TS 38.213 [13], clause 9.2.3. Note that this list contains only a list of resource IDs. The actual resources are configured in PUCCH-Config.SEQUENCE (SIZE (1..maxNrofPUCCH-ResourcesPerSet)) OF PUCCH-ResourceId,maxPayloadSizeMaximum number of UCI information bits that the UE may transmit using this PUCCH resource set (see TS 38.213 [13], clause 9.2.1). In a PUCCH occurrence, the UE chooses the first of its PUCCH-ResourceSet which supports the number of bits that the UE wants to transmit. The field is absent in the first set (Set0) and in the last configured set since the UE derives the maximum number of UCI information bits as specified in TS 38.213 [13], clause 9.2.1. This field can take integer values that are multiples of 4.INTEGER (4..256) OPTIONAL -- Need R } PUCCH-ResourceSetId ::= INTEGER (0..maxNrofPUCCH-ResourceSets-1) PUCCH-Resource ::= SEQUENCE {pucch-ResourceIdIdentifier of the PUCCH resource.PUCCH-ResourceId, startingPRB PRB-Id,intraSlotFrequencyHoppingEnabling intra-slot frequency hopping, applicable for all types of PUCCH formats. For long PUCCH over multiple slots, the intra and inter slot frequency hopping cannot be enabled at the same time for a UE. See TS 38.213 [13], clause 9.2.1.ENUMERATED { enabled } OPTIONAL, -- Need RsecondHopPRBIndex of first PRB after frequency hopping of PUCCH. This value is applicable for intra-slot frequency hopping (see TS 38.213 [13], clause 9.2.1) or inter-slot frequency hopping (see TS 38.213 [13], clause 9.2.6).PRB-Id OPTIONAL, -- Need RformatSelection of the PUCCH format (format 0 – 4) and format-specific parameters, see TS 38.213 [13], clause 9.2. format0 and format1 are only allowed for a resource in a first PUCCH resource set. format2, format3 and format4 are only allowed for a resource in non-first PUCCH resource set.CHOICE { format0 PUCCH-format0,format1Parameters that are common for all PUCCH resources of format 1.PUCCH-format1,format2Parameters that are common for all PUCCH resources of format 2.PUCCH-format2,format3Parameters that are common for all PUCCH resources of format 3.PUCCH-format3,format4Parameters that are common for all PUCCH resources of format 4.PUCCH-format4 } } PUCCH-ResourceId ::= INTEGER (0..maxNrofPUCCH-Resources-1) PUCCH-format0 ::= SEQUENCE { initialCyclicShift INTEGER(0..11), nrofSymbols INTEGER (1..2), startingSymbolIndex INTEGER(0..13) } PUCCH-format1 ::= SEQUENCE { initialCyclicShift INTEGER(0..11), nrofSymbols INTEGER (4..14), startingSymbolIndex INTEGER(0..10), timeDomainOCC INTEGER(0..6) } PUCCH-format2 ::= SEQUENCE {nrofPRBsThe supported values are 1,2,3,4,5,6,8,9,10,12,15 and 16.INTEGER (1..16), nrofSymbols INTEGER (1..2), startingSymbolIndex INTEGER(0..13) } PUCCH-format3 ::= SEQUENCE {nrofPRBsThe supported values are 1,2,3,4,5,6,8,9,10,12,15 and 16.INTEGER (1..16), nrofSymbols INTEGER (4..14), startingSymbolIndex INTEGER(0..10) } PUCCH-format4 ::= SEQUENCE { nrofSymbols INTEGER (4..14), occ-Length ENUMERATED {n2,n4}, occ-Index ENUMERATED {n0,n1,n2,n3}, startingSymbolIndex INTEGER(0..10) } -- TAG-PUCCH-CONFIG-STOP -- ASN1STOP
PUCCH-Config field descriptions |
---|
dl-DataToUL-ACK List of timing for given PDSCH to the DL ACK (see TS 38.213 [13], clause 9.1.2). |
format1 Parameters that are common for all PUCCH resources of format 1. |
format2 Parameters that are common for all PUCCH resources of format 2. |
format3 Parameters that are common for all PUCCH resources of format 3. |
format4 Parameters that are common for all PUCCH resources of format 4. |
resourceSetToAddModList, resourceSetToReleaseList Lists for adding and releasing PUCCH resource sets (see TS 38.213 [13], clause 9.2). |
resourceToAddModList, resourceToReleaseList Lists for adding and releasing PUCCH resources applicable for the UL BWP and serving cell in which the PUCCH-Config is defined. The resources defined herein are referred to from other parts of the configuration to determine which resource the UE shall use for which report. |
spatialRelationInfoToAddModList Configuration of the spatial relation between a reference RS and PUCCH. Reference RS can be SSB/CSI-RS/SRS. If the list has more than one element, MAC-CE selects a single element (see TS 38.321 [3], clause5.18.8 and TS 38.213 [13], clause 9.2.2). |
PUCCH-format3 field descriptions |
---|
nrofPRBs The supported values are 1,2,3,4,5,6,8,9,10,12,15 and 16. |
PUCCH-FormatConfig field descriptions |
---|
additionalDMRS If the field is present, the UE enables 2 DMRS symbols per hop of a PUCCH Format 3 or 4 if both hops are more than X symbols when FH is enabled (X=4). And it enables 4 DMRS symbols for a PUCCH Format 3 or 4 with more than 2X+1 symbols when FH is disabled (X=4). The field is not applicable for format 1 and 2. See TS 38.213 [13], clause 9.2.2. |
interslotFrequencyHopping If the field is present, the UE enables inter-slot frequency hopping when PUCCH Format 1, 3 or 4 is repeated over multiple slots. For long PUCCH over multiple slots, the intra and inter slot frequency hopping cannot be enabled at the same time for a UE. The field is not applicable for format 2. See TS 38.213 [13], clause 9.2.6. |
maxCodeRate Max coding rate to determine how to feedback UCI on PUCCH for format 2, 3 or 4. The field is not applicable for format 1. See TS 38.213 [13], clause 9.2.5. |
nrofSlots Number of slots with the same PUCCH F1, F3 or F4. When the field is absent the UE applies the value n1. The field is not applicable for format 2. See TS 38.213 [13], clause 9.2.6. |
pi2BPSK If the field is present, the UE uses pi/2 BPSK for UCI symbols instead of QPSK for PUCCH. The field is not applicable for format 1 and 2. See TS 38.213 [13], clause 9.2.5. |
simultaneousHARQ-ACK-CSI If the field is present, the UE uses simultaneous transmission of CSI and HARQ-ACK feedback with or without SR with PUCCH Format 2, 3 or 4. See TS 38.213 [13], clause 9.2.5. When the field is absent the UE applies the value off.The field is not applicable for format 1. |
PUCCH-Resource field descriptions |
---|
format Selection of the PUCCH format (format 0 – 4) and format-specific parameters, see TS 38.213 [13], clause 9.2. format0 and format1 are only allowed for a resource in a first PUCCH resource set. format2, format3 and format4 are only allowed for a resource in non-first PUCCH resource set. |
intraSlotFrequencyHopping Enabling intra-slot frequency hopping, applicable for all types of PUCCH formats. For long PUCCH over multiple slots, the intra and inter slot frequency hopping cannot be enabled at the same time for a UE. See TS 38.213 [13], clause 9.2.1. |
pucch-ResourceId Identifier of the PUCCH resource. |
secondHopPRB Index of first PRB after frequency hopping of PUCCH. This value is applicable for intra-slot frequency hopping (see TS 38.213 [13], clause 9.2.1) or inter-slot frequency hopping (see TS 38.213 [13], clause 9.2.6). |
PUCCH-ResourceSet field descriptions |
---|
maxPayloadSize Maximum number of UCI information bits that the UE may transmit using this PUCCH resource set (see TS 38.213 [13], clause 9.2.1). In a PUCCH occurrence, the UE chooses the first of its PUCCH-ResourceSet which supports the number of bits that the UE wants to transmit. The field is absent in the first set (Set0) and in the last configured set since the UE derives the maximum number of UCI information bits as specified in TS 38.213 [13], clause 9.2.1. This field can take integer values that are multiples of 4. |
resourceList PUCCH resources of format0 and format1 are only allowed in the first PUCCH resource set, i.e., in a PUCCH-ResourceSet with pucch-ResourceSetId = 0. This set may contain between 1 and 32 resources. PUCCH resources of format2, format3 and format4 are only allowed in a PUCCH-ResourceSet with pucch-ResourceSetId > 0. If present, these sets contain between 1 and 8 resources each. The UE chooses a PUCCH-Resource from this list as specified in TS 38.213 [13], clause 9.2.3. Note that this list contains only a list of resource IDs. The actual resources are configured in PUCCH-Config. |
The IE PUCCH-ConfigCommon is used to configure the cell specific PUCCH parameters.
-- ASN1START -- TAG-PUCCH-CONFIGCOMMON-START PUCCH-ConfigCommon ::= SEQUENCE {pucch-ResourceCommonAn entry into a 16-row table where each row configures a set of cell-specific PUCCH resources/parameters. The UE uses those PUCCH resources until it is provided with a dedicated PUCCH-Config (e.g. during initial access) on the initial uplink BWP. Once the network provides a dedicated PUCCH-Config for that bandwidth part the UE applies that one instead of the one provided in this field (see TS 38.213 [13], clause 9.2).INTEGER (0..15) OPTIONAL, -- Cond InitialBWP-Onlypucch-GroupHoppingConfiguration of group- and sequence hopping for all the PUCCH formats 0, 1, 3 and 4. Value neither implies neither group or sequence hopping is enabled. Value enable enables group hopping and disables sequence hopping. Value disable disables group hopping and enables sequence hopping (see TS 38.211 [16], clause 6.3.2.2).ENUMERATED { neither, enable, disable },hoppingIdCell-specific scrambling ID for group hopping and sequence hopping if enabled, see TS 38.211 [16], clause 6.3.2.2.INTEGER (0..1023) OPTIONAL, -- Need Rp0-nominalPower control parameter P0 for PUCCH transmissions. Value in dBm. Only even values (step size 2) allowed (see TS 38.213 [13], clause 7.2).INTEGER (-202..24) OPTIONAL, -- Need R ... } -- TAG-PUCCH-CONFIGCOMMON-STOP -- ASN1STOP
PUCCH-ConfigCommon field descriptions |
---|
hoppingId Cell-specific scrambling ID for group hopping and sequence hopping if enabled, see TS 38.211 [16], clause 6.3.2.2. |
p0-nominal Power control parameter P0 for PUCCH transmissions. Value in dBm. Only even values (step size 2) allowed (see TS 38.213 [13], clause 7.2). |
pucch-GroupHopping Configuration of group- and sequence hopping for all the PUCCH formats 0, 1, 3 and 4. Value neither implies neither group or sequence hopping is enabled. Value enable enables group hopping and disables sequence hopping. Value disable disables group hopping and enables sequence hopping (see TS 38.211 [16], clause 6.3.2.2). |
pucch-ResourceCommon An entry into a 16-row table where each row configures a set of cell-specific PUCCH resources/parameters. The UE uses those PUCCH resources until it is provided with a dedicated PUCCH-Config (e.g. during initial access) on the initial uplink BWP. Once the network provides a dedicated PUCCH-Config for that bandwidth part the UE applies that one instead of the one provided in this field (see TS 38.213 [13], clause 9.2). |
Conditional Presence | Explanation |
---|---|
InitialBWP-Only | The field is mandatory present in the PUCCH-ConfigCommon of the initial BWP (BWP#0) in SIB1. It is absent in other BWPs. |
The IE PUCCH-PathlossReferenceRS-Id is an ID for a reference signal (RS) configured as PUCCH pathloss reference (see TS 38.213 [13], clause 7.2).
The IE PUCCH-PowerControl is used to configure UE-specific parameters for the power control of PUCCH.
-- ASN1START -- TAG-PUCCH-POWERCONTROL-START PUCCH-PowerControl ::= SEQUENCE {deltaF-PUCCH-f0deltaF for PUCCH format 0 with 1dB step size (see TS 38.213 [13], clause 7.2).INTEGER (-16..15) OPTIONAL, -- Need RdeltaF-PUCCH-f1deltaF for PUCCH format 1 with 1dB step size (see TS 38.213 [13], clause 7.2).INTEGER (-16..15) OPTIONAL, -- Need RdeltaF-PUCCH-f2deltaF for PUCCH format 2 with 1dB step size (see TS 38.213 [13], clause 7.2).INTEGER (-16..15) OPTIONAL, -- Need RdeltaF-PUCCH-f3deltaF for PUCCH format 3 with 1dB step size (see TS 38.213 [13], clause 7.2).INTEGER (-16..15) OPTIONAL, -- Need RdeltaF-PUCCH-f4deltaF for PUCCH format 4 with 1dB step size (see TS 38.213 [13], clause 7.2).INTEGER (-16..15) OPTIONAL, -- Need Rp0-SetA set with dedicated P0 values for PUCCH, i.e., {P01, P02,... } (see TS 38.213 [13], clause 7.2).SEQUENCE (SIZE (1..maxNrofPUCCH-P0-PerSet)) OF P0-PUCCH OPTIONAL, -- Need MpathlossReferenceRSsA set of Reference Signals (e.g. a CSI-RS config or a SS block) to be used for PUCCH pathloss estimation. Up to maxNrofPUCCH-PathlossReference-RSs may be configured.If the field is not configured, the UE uses the SSB as reference signal (see TS 38.213 [13], clause 7.2).SEQUENCE (SIZE (1..maxNrofPUCCH-PathlossReferenceRSs)) OF PUCCH-PathlossReferenceRS OPTIONAL, -- Need MtwoPUCCH-PC-AdjustmentStatesNumber of PUCCH power control adjustment states maintained by the UE (i.e., g(i)). If the field is present (n2) the UE maintains two power control states (i.e., g(i,0) and g(i,1)). If the field is absent, it maintains one power control state (i.e., g(i,0)) (see TS 38.213 [13], clause 7.2).ENUMERATED {twoStates} OPTIONAL, -- Need S ... } P0-PUCCH ::= SEQUENCE { p0-PUCCH-Id P0-PUCCH-Id,p0-PUCCH-ValueP0 value for PUCCH with 1dB step size.INTEGER (-16..15) } P0-PUCCH-Id ::= INTEGER (1..8) PUCCH-PathlossReferenceRS ::= SEQUENCE { pucch-PathlossReferenceRS-Id PUCCH-PathlossReferenceRS-Id, referenceSignal CHOICE { ssb-Index SSB-Index, csi-RS-Index NZP-CSI-RS-ResourceId } } -- TAG-PUCCH-POWERCONTROL-STOP -- ASN1STOP
P0-PUCCH field descriptions |
---|
p0-PUCCH-Value P0 value for PUCCH with 1dB step size. |
PUCCH-PowerControl field descriptions |
---|
deltaF-PUCCH-f0 deltaF for PUCCH format 0 with 1dB step size (see TS 38.213 [13], clause 7.2). |
deltaF-PUCCH-f1 deltaF for PUCCH format 1 with 1dB step size (see TS 38.213 [13], clause 7.2). |
deltaF-PUCCH-f2 deltaF for PUCCH format 2 with 1dB step size (see TS 38.213 [13], clause 7.2). |
deltaF-PUCCH-f3 deltaF for PUCCH format 3 with 1dB step size (see TS 38.213 [13], clause 7.2). |
deltaF-PUCCH-f4 deltaF for PUCCH format 4 with 1dB step size (see TS 38.213 [13], clause 7.2). |
p0-Set A set with dedicated P0 values for PUCCH, i.e., {P01, P02,... } (see TS 38.213 [13], clause 7.2). |
pathlossReferenceRSs A set of Reference Signals (e.g. a CSI-RS config or a SS block) to be used for PUCCH pathloss estimation. Up to maxNrofPUCCH-PathlossReference-RSs may be configured.If the field is not configured, the UE uses the SSB as reference signal (see TS 38.213 [13], clause 7.2). |
twoPUCCH-PC-AdjustmentStates Number of PUCCH power control adjustment states maintained by the UE (i.e., g(i)). If the field is present (n2) the UE maintains two power control states (i.e., g(i,0) and g(i,1)). If the field is absent, it maintains one power control state (i.e., g(i,0)) (see TS 38.213 [13], clause 7.2). |
The IE PUCCH-SpatialRelationInfo is used to configure the spatial setting for PUCCH transmission and the parameters for PUCCH power control, see TS 38.213, [13], clause 9.2.2.
-- ASN1START -- TAG-PUCCH-SPATIALRELATIONINFO-START PUCCH-SpatialRelationInfo ::= SEQUENCE { pucch-SpatialRelationInfoId PUCCH-SpatialRelationInfoId,servingCellIdIf the field is absent, the UE applies the ServCellId of the serving cell in which this PUCCH-SpatialRelationInfo is configuredServCellIndex OPTIONAL, -- Need S referenceSignal CHOICE { ssb-Index SSB-Index, csi-RS-Index NZP-CSI-RS-ResourceId, srs SEQUENCE { resource SRS-ResourceId, uplinkBWP BWP-Id } }, pucch-PathlossReferenceRS-Id PUCCH-PathlossReferenceRS-Id, p0-PUCCH-Id P0-PUCCH-Id, closedLoopIndex ENUMERATED { i0, i1 } } PUCCH-SpatialRelationInfoId ::= INTEGER (1..maxNrofSpatialRelationInfos) -- TAG-PUCCH-SPATIALRELATIONINFO-STOP -- ASN1STOP
PUCCH-SpatialRelationInfo field descriptions |
---|
servingCellId If the field is absent, the UE applies the ServCellId of the serving cell in which this PUCCH-SpatialRelationInfo is configured |
The IE PUCCH-TPC-CommandConfig is used to configure the UE for extracting TPC commands for PUCCH from a group-TPC messages on DCI.
-- ASN1START -- TAG-PUCCH-TPC-COMMANDCONFIG-START PUCCH-TPC-CommandConfig ::= SEQUENCE {tpc-IndexPCellAn index determining the position of the first bit of TPC command (applicable to the SpCell) inside the DCI format 2-2 payload.INTEGER (1..15) OPTIONAL, -- Cond PDCCH-OfSpcelltpc-IndexPUCCH-SCellAn index determining the position of the first bit of TPC command (applicable to the PUCCH SCell) inside the DCI format 2-2 payload.INTEGER (1..15) OPTIONAL, -- Cond PDCCH-ofSpCellOrPUCCH-SCell ... } -- TAG-PUCCH-TPC-COMMANDCONFIG-STOP -- ASN1STOP
PUCCH-TPC-CommandConfig field descriptions |
---|
tpc-IndexPCell An index determining the position of the first bit of TPC command (applicable to the SpCell) inside the DCI format 2-2 payload. |
tpc-IndexPUCCH-SCell An index determining the position of the first bit of TPC command (applicable to the PUCCH SCell) inside the DCI format 2-2 payload. |
Conditional Presence | Explanation |
---|---|
PDCCH-OfSpcell | The field is mandatory present if the PUCCH-TPC-CommandConfig is provided in the PDCCH-Config for the SpCell. Otherwise, the field is absent, Need R. |
PDCCH-ofSpCellOrPUCCH-SCell | The field is mandatory present if the PUCCH-TPC-CommandConfig is provided in the PDCCH-Config for the PUCCH-SCell. The field is optionally present, need R, if the UE is configured with a PUCCH SCell in this cell group and if the PUCCH-TPC-CommandConfig is provided in the PDCCH-Config for the SpCell. Otherwise, the field is absent, Need R. |
The IE PUSCH-Config is used to configure the UE specific PUSCH parameters applicable to a particular BWP.
-- ASN1START -- TAG-PUSCH-CONFIG-START PUSCH-Config ::= SEQUENCE {dataScramblingIdentityPUSCHIdentifier used to initalite data scrambling (c_init) for PUSCH. If the field is absent, the UE applies the physical cell ID. (see TS 38.211 [16], clause 6.3.1.1).INTEGER (0..1023) OPTIONAL, -- Need StxConfigWhether UE uses codebook based or non-codebook based transmission (see TS 38.214 [19], clause 6.1.1). If the field is absent, the UE transmits PUSCH on one antenna port, see TS 38.214 [19], clause 6.1.1.ENUMERATED {codebook, nonCodebook} OPTIONAL, -- Need Sdmrs-UplinkForPUSCH-MappingTypeADMRS configuration for PUSCH transmissions using PUSCH mapping type A (chosen dynamically via PUSCH-TimeDomainResourceAllocation). Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B.SetupRelease { DMRS-UplinkConfig } OPTIONAL, -- Need Mdmrs-UplinkForPUSCH-MappingTypeBDMRS configuration for PUSCH transmissions using PUSCH mapping type B (chosen dynamically via PUSCH-TimeDomainResourceAllocation).Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B.SetupRelease { DMRS-UplinkConfig } OPTIONAL, -- Need M pusch-PowerControl PUSCH-PowerControl OPTIONAL, -- Need MfrequencyHoppingThe value intraSlot enables 'Intra-slot frequency hopping' and the value interSlot enables 'Inter-slot frequency hopping'. If the field is absent, frequency hopping is not configured (see TS 38.214 [19], clause 6.3).ENUMERATED {intraSlot, interSlot} OPTIONAL, -- Need SfrequencyHoppingOffsetListsSet of frequency hopping offsets used when frequency hopping is enabled for granted transmission (not msg3) and type 2 configured grant activation (see TS 38.214 [19], clause 6.3).SEQUENCE (SIZE (1..4)) OF INTEGER (1.. maxNrofPhysicalResourceBlocks-1) OPTIONAL, -- Need MresourceAllocationConfiguration of resource allocation type 0 and resource allocation type 1 for non-fallback DCI (see TS 38.214 [19], clause 6.1.2).ENUMERATED { resourceAllocationType0, resourceAllocationType1, dynamicSwitch},pusch-TimeDomainAllocationListList of time domain allocations for timing of UL assignment to UL data (see TS 38.214 [19], table 6.1.2.1.1-1).SetupRelease { PUSCH-TimeDomainResourceAllocationList } OPTIONAL, -- Need Mpusch-AggregationFactorNumber of repetitions for data (see TS 38.214 [19], clause 6.1.2.1). If the field is absent the UE applies the value 1.ENUMERATED { n2, n4, n8 } OPTIONAL, -- Need Smcs-TableIndicates which MCS table the UE shall use for PUSCH without transform precoder (see TS 38.214 [19], clause 6.1.4.1). If the field is absent the UE applies the value 64QAMENUMERATED {qam256, qam64LowSE} OPTIONAL, -- Need Smcs-TableTransformPrecoderIndicates which MCS table the UE shall use for PUSCH with transform precoding (see TS 38.214 [19], clause 6.1.4.1) If the field is absent the UE applies the value 64QAMENUMERATED {qam256, qam64LowSE} OPTIONAL, -- Need StransformPrecoderThe UE specific selection of transformer precoder for PUSCH (see TS 38.214 [19], clause 6.1.3). When the field is absent the UE applies the value of the field msg3-transformPrecoder.ENUMERATED {enabled, disabled} OPTIONAL, -- Need ScodebookSubsetSubset of PMIs addressed by TPMI, where PMIs are those supported by UEs with maximum coherence capabilities (see TS 38.214 [19], clause 6.1.1.1).ENUMERATED {fullyAndPartialAndNonCoherent, partialAndNonCoherent,nonCoherent} OPTIONAL, -- Cond codebookBasedmaxRankSubset of PMIs addressed by TRIs from 1 to ULmaxRank (see TS 38.214 [19], clause 6.1.1.1).INTEGER (1..4) OPTIONAL, -- Cond codebookBasedrbg-SizeSelection between configuration 1 and configuration 2 for RBG size for PUSCH. The UE does not apply this field if resourceAllocation is set to resourceAllocationType1. Otherwise, the UE applies the value config1 when the field is absent (see TS 38.214 [19], clause 6.1.2.2.1).ENUMERATED { config2} OPTIONAL, -- Need S uci-OnPUSCH SetupRelease { UCI-OnPUSCH} OPTIONAL, -- Need Mtp-pi2BPSKEnables pi/2-BPSK modulation with transform precoding if the field is present and disables it otherwise.ENUMERATED {enabled} OPTIONAL, -- Need S ... } UCI-OnPUSCH ::= SEQUENCE {betaOffsetsSelection between and configuration of dynamic and semi-static beta-offset. If the field is not configured, the UE applies the value 'semiStatic' (see TS 38.213 [13], clause 9.3).CHOICE { dynamic SEQUENCE (SIZE (4)) OF BetaOffsets, semiStatic BetaOffsets } OPTIONAL, -- Need MscalingIndicates a scaling factor to limit the number of resource elements assigned to UCI on PUSCH. Value f0p5 corresponds to 0.5, value f0p65 corresponds to 0.65, and so on. The value configured herein is applicable for PUSCH with configured grant (see TS 38.212 [17], clause 6.3).ENUMERATED { f0p5, f0p65, f0p8, f1 } } -- TAG-PUSCH-CONFIG-STOP -- ASN1STOP
PUSCH-Configfield descriptions |
---|
codebookSubset Subset of PMIs addressed by TPMI, where PMIs are those supported by UEs with maximum coherence capabilities (see TS 38.214 [19], clause 6.1.1.1). |
dataScramblingIdentityPUSCH Identifier used to initalite data scrambling (c_init) for PUSCH. If the field is absent, the UE applies the physical cell ID. (see TS 38.211 [16], clause 6.3.1.1). |
dmrs-UplinkForPUSCH-MappingTypeA DMRS configuration for PUSCH transmissions using PUSCH mapping type A (chosen dynamically via PUSCH-TimeDomainResourceAllocation). Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B. |
dmrs-UplinkForPUSCH-MappingTypeB DMRS configuration for PUSCH transmissions using PUSCH mapping type B (chosen dynamically via PUSCH-TimeDomainResourceAllocation).Only the fields dmrs-Type, dmrs-AdditionalPosition and maxLength may be set differently for mapping type A and B. |
frequencyHopping The value intraSlot enables 'Intra-slot frequency hopping' and the value interSlot enables 'Inter-slot frequency hopping'. If the field is absent, frequency hopping is not configured (see TS 38.214 [19], clause 6.3). |
frequencyHoppingOffsetLists Set of frequency hopping offsets used when frequency hopping is enabled for granted transmission (not msg3) and type 2 configured grant activation (see TS 38.214 [19], clause 6.3). |
maxRank Subset of PMIs addressed by TRIs from 1 to ULmaxRank (see TS 38.214 [19], clause 6.1.1.1). |
mcs-Table Indicates which MCS table the UE shall use for PUSCH without transform precoder (see TS 38.214 [19], clause 6.1.4.1). If the field is absent the UE applies the value 64QAM |
mcs-TableTransformPrecoder Indicates which MCS table the UE shall use for PUSCH with transform precoding (see TS 38.214 [19], clause 6.1.4.1) If the field is absent the UE applies the value 64QAM |
pusch-AggregationFactor Number of repetitions for data (see TS 38.214 [19], clause 6.1.2.1). If the field is absent the UE applies the value 1. |
pusch-TimeDomainAllocationList List of time domain allocations for timing of UL assignment to UL data (see TS 38.214 [19], table 6.1.2.1.1-1). |
rbg-Size Selection between configuration 1 and configuration 2 for RBG size for PUSCH. The UE does not apply this field if resourceAllocation is set to resourceAllocationType1. Otherwise, the UE applies the value config1 when the field is absent (see TS 38.214 [19], clause 6.1.2.2.1). |
resourceAllocation Configuration of resource allocation type 0 and resource allocation type 1 for non-fallback DCI (see TS 38.214 [19], clause 6.1.2). |
tp-pi2BPSK Enables pi/2-BPSK modulation with transform precoding if the field is present and disables it otherwise. |
transformPrecoder The UE specific selection of transformer precoder for PUSCH (see TS 38.214 [19], clause 6.1.3). When the field is absent the UE applies the value of the field msg3-transformPrecoder. |
txConfig Whether UE uses codebook based or non-codebook based transmission (see TS 38.214 [19], clause 6.1.1). If the field is absent, the UE transmits PUSCH on one antenna port, see TS 38.214 [19], clause 6.1.1. |
UCI-OnPUSCH field descriptions |
---|
betaOffsets Selection between and configuration of dynamic and semi-static beta-offset. If the field is not configured, the UE applies the value 'semiStatic' (see TS 38.213 [13], clause 9.3). |
scaling Indicates a scaling factor to limit the number of resource elements assigned to UCI on PUSCH. Value f0p5 corresponds to 0.5, value f0p65 corresponds to 0.65, and so on. The value configured herein is applicable for PUSCH with configured grant (see TS 38.212 [17], clause 6.3). |
Conditional Presence | Explanation |
---|---|
codebookBased | The field is mandatory present if txConfig is set to codebook and absent otherwise. |
The IE PUSCH-ConfigCommon is used to configure the cell specific PUSCH parameters.
-- ASN1START -- TAG-PUSCH-CONFIGCOMMON-START PUSCH-ConfigCommon ::= SEQUENCE {groupHoppingEnabledTransformPrecodingFor DMRS transmission with transform precoder, the NW may configure group hopping by this cell-specific parameter, see TS 38.211 [16], clause 6.4.1.1.1.2.ENUMERATED {enabled} OPTIONAL, -- Need Rpusch-TimeDomainAllocationListList of time domain allocations for timing of UL assignment to UL data (see TS 38.214 [19], table 6.1.2.1.1-1).PUSCH-TimeDomainResourceAllocationList OPTIONAL, -- Need Rmsg3-DeltaPreamblePower offset between msg3 and RACH preamble transmission. Actual value = field value * 2 [dB] (see TS 38.213 [13], clause 7.1)INTEGER (-1..6) OPTIONAL, -- Need Rp0-NominalWithGrantP0 value for PUSCH with grant (except msg3). Value in dBm. Only even values (step size 2) allowed (see TS 38.213 [13], clause 7.1) This field is cell specificINTEGER (-202..24) OPTIONAL, -- Need R ... } -- TAG-PUSCH-CONFIGCOMMON-STOP -- ASN1STOP
PUSCH-ConfigCommon field descriptions |
---|
groupHoppingEnabledTransformPrecoding For DMRS transmission with transform precoder, the NW may configure group hopping by this cell-specific parameter, see TS 38.211 [16], clause 6.4.1.1.1.2. |
msg3-DeltaPreamble Power offset between msg3 and RACH preamble transmission. Actual value = field value * 2 [dB] (see TS 38.213 [13], clause 7.1) |
p0-NominalWithGrant P0 value for PUSCH with grant (except msg3). Value in dBm. Only even values (step size 2) allowed (see TS 38.213 [13], clause 7.1) This field is cell specific |
pusch-TimeDomainAllocationList List of time domain allocations for timing of UL assignment to UL data (see TS 38.214 [19], table 6.1.2.1.1-1). |
The IE PUSCH-PowerControl is used to configure UE specific power control parameter for PUSCH.
-- ASN1START -- TAG-PUSCH-POWERCONTROL-START PUSCH-PowerControl ::= SEQUENCE {tpc-AccumulationIf enabled, UE applies TPC commands via accumulation. If not enabled, UE applies the TPC command without accumulation. If the field is absent, TPC accumulation is enabled (see TS 38.213 [13], clause 7.1).ENUMERATED { disabled } OPTIONAL, -- Need Smsg3-AlphaDedicated alpha value for msg3 PUSCH (see TS 38.213 [13], clause 7.1). When the field is absent the UE applies the value 1.Alpha OPTIONAL, -- Need Sp0-NominalWithoutGrantP0 value for UL grant-free/SPS based PUSCH. Value in dBm. Only even values (step size 2) allowed (see TS 38.213 [13], clause 7.1).INTEGER (-202..24) OPTIONAL, -- Need Mp0-AlphaSetsconfiguration {p0-pusch, alpha} sets for PUSCH (except msg3), i.e., { {p0,alpha,index1}, {p0,alpha,index2},...} (see TS 38.213 [13], clause 7.1). When no set is configured, the UE uses the P0-nominal for msg3 PUSCH, P0-UE is set to 0 and alpha is set according to msg3-Alpha configured for msg3 PUSCH.SEQUENCE (SIZE (1..maxNrofP0-PUSCH-AlphaSets)) OF P0-PUSCH-AlphaSet OPTIONAL, -- Need MpathlossReferenceRSToAddModListA set of Reference Signals (e.g. a CSI-RS config or a SS block) to be used for PUSCH path loss estimation. Up to maxNrofPUSCH-PathlossReferenceRSs may be configured (see TS 38.213 [13], clause 7.1).SEQUENCE (SIZE (1..maxNrofPUSCH-PathlossReferenceRSs)) OF PUSCH-PathlossReferenceRS OPTIONAL, -- Need N pathlossReferenceRSToReleaseList SEQUENCE (SIZE (1..maxNrofPUSCH-PathlossReferenceRSs)) OF PUSCH-PathlossReferenceRS-Id OPTIONAL, -- Need NtwoPUSCH-PC-AdjustmentStatesNumber of PUSCH power control adjustment states maintained by the UE (i.e., fc(i)). If the field is present (n2) the UE maintains two power control states (i.e., fc(i,0) and fc(i,1)). If the field is absent, it maintains one power control state (i.e., fc(i,0)) (see TS 38.213 [13], clause 7.1).ENUMERATED {twoStates} OPTIONAL, -- Need SdeltaMCSIndicates whether to apply delta MCS. When the field is absent, the UE applies Ks = 0 in delta_TFC formula for PUSCH (see TS 38.213 [13], clause 7.1).ENUMERATED {enabled} OPTIONAL, -- Need Ssri-PUSCH-MappingToAddModListA list of SRI-PUSCH-PowerControl elements among which one is selected by the SRI field in DCI (see TS 38.213 [13], clause 7.1).SEQUENCE (SIZE (1..maxNrofSRI-PUSCH-Mappings)) OF SRI-PUSCH-PowerControl OPTIONAL, -- Need N sri-PUSCH-MappingToReleaseList SEQUENCE (SIZE (1..maxNrofSRI-PUSCH-Mappings)) OF SRI-PUSCH-PowerControlId OPTIONAL -- Need N } P0-PUSCH-AlphaSet ::= SEQUENCE { p0-PUSCH-AlphaSetId P0-PUSCH-AlphaSetId,p0P0 value for PUSCH with grant (except msg3) in steps of 1dB (see TS 38.213 [13], clause 7.1). When the field is absent the UE applies the value 0.INTEGER (-16..15) OPTIONAL, -- Need Salphaalpha value for PUSCH with grant (except msg3) (see TS 38.213 [13], clause 7.1). When the field is absent the UE applies the value 1.Alpha OPTIONAL -- Need S } P0-PUSCH-AlphaSetId ::= INTEGER (0..maxNrofP0-PUSCH-AlphaSets-1) PUSCH-PathlossReferenceRS ::= SEQUENCE { pusch-PathlossReferenceRS-Id PUSCH-PathlossReferenceRS-Id, referenceSignal CHOICE { ssb-Index SSB-Index, csi-RS-Index NZP-CSI-RS-ResourceId } } PUSCH-PathlossReferenceRS-Id ::= INTEGER (0..maxNrofPUSCH-PathlossReferenceRSs-1) SRI-PUSCH-PowerControl ::= SEQUENCE {sri-PUSCH-PowerControlIdThe ID of this SRI-PUSCH-PowerControl configuration. It is used as the codepoint (payload) in the SRI DCI field.SRI-PUSCH-PowerControlId,sri-PUSCH-PathlossReferenceRS-IdThe ID of PUSCH-PathlossReferenceRS as configured in the pathlossReferenceRSToAddModList in PUSCH-PowerControl.PUSCH-PathlossReferenceRS-Id,sri-P0-PUSCH-AlphaSetIdThe ID of a P0-PUSCH-AlphaSet as configured in p0-AlphaSetsin PUSCH-PowerControl.P0-PUSCH-AlphaSetId,sri-PUSCH-ClosedLoopIndexThe index of the closed power control loop associated with this SRI-PUSCH-PowerControl.ENUMERATED { i0, i1 } } SRI-PUSCH-PowerControlId ::= INTEGER (0..maxNrofSRI-PUSCH-Mappings-1) -- TAG-PUSCH-POWERCONTROL-STOP -- ASN1STOP
P0-PUSCH-AlphaSet field descriptions |
---|
alpha alpha value for PUSCH with grant (except msg3) (see TS 38.213 [13], clause 7.1). When the field is absent the UE applies the value 1. |
p0 P0 value for PUSCH with grant (except msg3) in steps of 1dB (see TS 38.213 [13], clause 7.1). When the field is absent the UE applies the value 0. |
PUSCH-PowerControl field descriptions |
---|
deltaMCS Indicates whether to apply delta MCS. When the field is absent, the UE applies Ks = 0 in delta_TFC formula for PUSCH (see TS 38.213 [13], clause 7.1). |
msg3-Alpha Dedicated alpha value for msg3 PUSCH (see TS 38.213 [13], clause 7.1). When the field is absent the UE applies the value 1. |
p0-AlphaSets configuration {p0-pusch, alpha} sets for PUSCH (except msg3), i.e., { {p0,alpha,index1}, {p0,alpha,index2},...} (see TS 38.213 [13], clause 7.1). When no set is configured, the UE uses the P0-nominal for msg3 PUSCH, P0-UE is set to 0 and alpha is set according to msg3-Alpha configured for msg3 PUSCH. |
p0-NominalWithoutGrant P0 value for UL grant-free/SPS based PUSCH. Value in dBm. Only even values (step size 2) allowed (see TS 38.213 [13], clause 7.1). |
pathlossReferenceRSToAddModList A set of Reference Signals (e.g. a CSI-RS config or a SS block) to be used for PUSCH path loss estimation. Up to maxNrofPUSCH-PathlossReferenceRSs may be configured (see TS 38.213 [13], clause 7.1). |
sri-PUSCH-MappingToAddModList A list of SRI-PUSCH-PowerControl elements among which one is selected by the SRI field in DCI (see TS 38.213 [13], clause 7.1). |
tpc-Accumulation If enabled, UE applies TPC commands via accumulation. If not enabled, UE applies the TPC command without accumulation. If the field is absent, TPC accumulation is enabled (see TS 38.213 [13], clause 7.1). |
twoPUSCH-PC-AdjustmentStates Number of PUSCH power control adjustment states maintained by the UE (i.e., fc(i)). If the field is present (n2) the UE maintains two power control states (i.e., fc(i,0) and fc(i,1)). If the field is absent, it maintains one power control state (i.e., fc(i,0)) (see TS 38.213 [13], clause 7.1). |
SRI-PUSCH-PowerControl field descriptions |
---|
sri-P0-PUSCH-AlphaSetId The ID of a P0-PUSCH-AlphaSet as configured in p0-AlphaSetsin PUSCH-PowerControl. |
sri-PUSCH-ClosedLoopIndex The index of the closed power control loop associated with this SRI-PUSCH-PowerControl. |
sri-PUSCH-PathlossReferenceRS-Id The ID of PUSCH-PathlossReferenceRS as configured in the pathlossReferenceRSToAddModList in PUSCH-PowerControl. |
sri-PUSCH-PowerControlId The ID of this SRI-PUSCH-PowerControl configuration. It is used as the codepoint (payload) in the SRI DCI field. |
The IE PUSCH-ServingCellConfig is used to configure UE specific PUSCH parameters that are common across the UE's BWPs of one serving cell.
-- ASN1START -- TAG-PUSCH-SERVINGCELLCONFIG-START PUSCH-ServingCellConfig ::= SEQUENCE {codeBlockGroupTransmissionEnables and configures code-block-group (CBG) based transmission (see TS 38.214 [19], clause 5.1.5).SetupRelease { PUSCH-CodeBlockGroupTransmission } OPTIONAL, -- Need MrateMatchingEnables LBRM (Limited buffer rate-matching). When the field is absent the UE applies FBRM (Full buffer rate-matchingLBRM) (see TS 38.212 [17], clause 5.4.2).ENUMERATED {limitedBufferRM} OPTIONAL, -- Need SxOverheadIf the field is absent, the UE applies the value 'xoh0' (see TS 38.214 [19], clause 5.1.3.2).ENUMERATED {xoh6, xoh12, xoh18} OPTIONAL, -- Need S ..., [[maxMIMO-LayersIndicates the maximum MIMO layer to be used for PUSCH in all BWPs of the normal UL of this serving cell (see TS 38.212 [17], clause 5.4.2.1). If present, the network sets maxRank to the same value. For SUL, the maximum number of MIMO layers is always 1, and network does not configure this field.INTEGER (1..4) OPTIONAL, -- Need MprocessingType2EnabledEnables configuration of advanced processing time capability 2 for PUSCH (see 38.214 [19], clause 6.4).BOOLEAN OPTIONAL -- Need M ]] } PUSCH-CodeBlockGroupTransmission ::= SEQUENCE {maxCodeBlockGroupsPerTransportBlockMaximum number of code-block-groups (CBGs) per TB (see TS 38.213 [13], clause9.1).ENUMERATED {n2, n4, n6, n8}, ... } -- TAG-PUSCH-SERVINGCELLCONFIG-STOP -- ASN1STOP
PUSCH-CodeBlockGroupTransmission field descriptions |
---|
maxCodeBlockGroupsPerTransportBlock Maximum number of code-block-groups (CBGs) per TB (see TS 38.213 [13], clause9.1). |
PUSCH-ServingCellConfig field descriptions |
---|
codeBlockGroupTransmission Enables and configures code-block-group (CBG) based transmission (see TS 38.214 [19], clause 5.1.5). |
maxMIMO-Layers Indicates the maximum MIMO layer to be used for PUSCH in all BWPs of the normal UL of this serving cell (see TS 38.212 [17], clause 5.4.2.1). If present, the network sets maxRank to the same value. For SUL, the maximum number of MIMO layers is always 1, and network does not configure this field. |
processingType2Enabled Enables configuration of advanced processing time capability 2 for PUSCH (see 38.214 [19], clause 6.4). |
rateMatching Enables LBRM (Limited buffer rate-matching). When the field is absent the UE applies FBRM (Full buffer rate-matchingLBRM) (see TS 38.212 [17], clause 5.4.2). |
xOverhead If the field is absent, the UE applies the value 'xoh0' (see TS 38.214 [19], clause 5.1.3.2). |
The IE PUSCH-TimeDomainResourceAllocation is used to configure a time domain relation between PDCCH and PUSCH. PUSCH-TimeDomainResourceAllocationList contains one or more of such PUSCH-TimeDomainResourceAllocations. The network indicates in the UL grant which of the configured time domain allocations the UE shall apply for that UL grant. The UE determines the bit width of the DCI field based on the number of entries in the PUSCH-TimeDomainResourceAllocationList. Value 0 in the DCI field refers to the first element in this list, value 1 in the DCI field refers to the second element in this list, and so on.
-- ASN1START -- TAG-PUSCH-TIMEDOMAINRESOURCEALLOCATIONLIST-START PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1..maxNrofUL-Allocations)) OF PUSCH-TimeDomainResourceAllocation PUSCH-TimeDomainResourceAllocation ::= SEQUENCE {k2Corresponds to L1 parameter 'K2' (see TS 38.214 [19], clause 6.1.2.1) When the field is absent the UE applies the value 1 when PUSCH SCS is 15/30 kHz; the value 2 when PUSCH SCS is 60 kHz, and the value 3 when PUSCH SCS is 120KHz.INTEGER(0..32) OPTIONAL, -- Need SmappingTypeMapping type (see TS 38.214 [19], clause 6.1.2.1).ENUMERATED {typeA, typeB},startSymbolAndLengthAn index giving valid combinations of start symbol and length (jointly encoded) as start and length indicator (SLIV). The network configures the field so that the allocation does not cross the slot boundary. (see TS 38.214 [19], clause 6.1.2.1).INTEGER (0..127) } -- TAG-PUSCH-TIMEDOMAINRESOURCEALLOCATIONLIST-STOP -- ASN1STOP
PUSCH-TimeDomainResourceAllocationList field descriptions |
---|
k2 Corresponds to L1 parameter 'K2' (see TS 38.214 [19], clause 6.1.2.1) When the field is absent the UE applies the value 1 when PUSCH SCS is 15/30 kHz; the value 2 when PUSCH SCS is 60 kHz, and the value 3 when PUSCH SCS is 120KHz. |
mappingType Mapping type (see TS 38.214 [19], clause 6.1.2.1). |
startSymbolAndLength An index giving valid combinations of start symbol and length (jointly encoded) as start and length indicator (SLIV). The network configures the field so that the allocation does not cross the slot boundary. (see TS 38.214 [19], clause 6.1.2.1). |
The IE PUSCH-TPC-CommandConfig is used to configure the UE for extracting TPC commands for PUSCH from a group-TPC messages on DCI.
-- ASN1START -- TAG-PUSCH-TPC-COMMANDCONFIG-START PUSCH-TPC-CommandConfig ::= SEQUENCE {tpc-IndexAn index determining the position of the first bit of TPC command inside the DCI format 2-2 payload.INTEGER (1..15) OPTIONAL, -- Cond SULtpc-IndexSULAn index determining the position of the first bit of TPC command inside the DCI format 2-2 payload.INTEGER (1..15) OPTIONAL, -- Cond SUL-OnlytargetCellThe serving cell to which the acquired power control commands are applicable. If the value is absent, the UE applies the TPC commands to the serving cell on which the command has been received.ServCellIndex OPTIONAL, -- Need S ... } -- TAG-PUSCH-TPC-COMMANDCONFIG-STOP -- ASN1STOP
PUSCH-TPC-CommandConfig field descriptions |
---|
targetCell The serving cell to which the acquired power control commands are applicable. If the value is absent, the UE applies the TPC commands to the serving cell on which the command has been received. |
tpc-Index An index determining the position of the first bit of TPC command inside the DCI format 2-2 payload. |
tpc-IndexSUL An index determining the position of the first bit of TPC command inside the DCI format 2-2 payload. |
Conditional Presence | Explanation |
---|---|
SUL-Only | The field is optionally present, Need R, if supplementaryUplink is configured within ServingCellConfig. It is absent otherwise. |
SUL | The field is optionally present, Need R, if supplementaryUplink is configured within ServingCellConfig. It is mandatory present otherwise. |
The IE Q-OffsetRange is used to indicate a cell, beam or measurement object specific offset to be applied when evaluating candidates for cell re-selection or when evaluating triggering conditions for measurement reporting. The value is in dB. Value dB-24 corresponds to -24 dB, dB-22 corresponds to -22 dB and so on.
The IE Q-QualMin is used to indicate for cell selection/ re-selection the required minimum received RSRQ level in the (NR) cell. Corresponds to parameter Qqualmin in TS 38.304 [20]. Actual value Qqualmin = field value [dB].
The IE Q-RxLevMin is used to indicate for cell selection/ re-selection the required minimum received RSRP level in the (NR) cell. Corresponds to parameter Qrxlevmin in TS 38.304 [20]. Actual value Qrxlevmin = field value * 2 [dBm].
The IE QuantityConfig specifies the measurement quantities and layer 3 filtering coefficients for NR and inter-RAT measurements.
-- ASN1START -- TAG-QUANTITYCONFIG-START QuantityConfig ::= SEQUENCE { quantityConfigNR-List SEQUENCE (SIZE (1..maxNrofQuantityConfig)) OF QuantityConfigNR OPTIONAL, -- Need M ..., [[ quantityConfigEUTRA FilterConfig OPTIONAL -- Need M ]] } QuantityConfigNR::= SEQUENCE {quantityConfigCellSpecifies L3 filter configurations for cell measurement results for the configurable RS Types (e.g. SS/PBCH block and CSI-RS) and the configurable measurement quantities (e.g. RSRP, RSRQ and SINR).QuantityConfigRS,quantityConfigRS-IndexSpecifies L3 filter configurations for measurement results per RS index for the configurable RS Types (e.g. SS/PBCH block and CSI-RS) and the configurable measurement quantities (e.g. RSRP, RSRQ and SINR).QuantityConfigRS OPTIONAL -- Need M } QuantityConfigRS ::= SEQUENCE {ssb-FilterConfigSS Block based L3 filter configurations: Specifies L3 filter configurations for SS-RSRP, SS-RSRQ and SS-SINR measurement results from the L1 filter(s), as defined in TS 38.215 [9].FilterConfig,csi-RS-FilterConfigCSI-RS basedL3 filter configurations: Specifies L3 filter configurations for CSI-RSRP, CSI-RSRQ and CSI-SINR measurement results from the L1 filter(s), as defined in TS 38.215 [9].FilterConfig } FilterConfig ::= SEQUENCE { filterCoefficientRSRP FilterCoefficient DEFAULT fc4, filterCoefficientRSRQ FilterCoefficient DEFAULT fc4, filterCoefficientRS-SINR FilterCoefficient DEFAULT fc4 } -- TAG-QUANTITYCONFIG-STOP -- ASN1STOP
QuantityConfigNR field descriptions |
---|
quantityConfigCell Specifies L3 filter configurations for cell measurement results for the configurable RS Types (e.g. SS/PBCH block and CSI-RS) and the configurable measurement quantities (e.g. RSRP, RSRQ and SINR). |
quantityConfigRS-Index Specifies L3 filter configurations for measurement results per RS index for the configurable RS Types (e.g. SS/PBCH block and CSI-RS) and the configurable measurement quantities (e.g. RSRP, RSRQ and SINR). |
QuantityConfigRS field descriptions |
---|
csi-RS-FilterConfig CSI-RS basedL3 filter configurations: Specifies L3 filter configurations for CSI-RSRP, CSI-RSRQ and CSI-SINR measurement results from the L1 filter(s), as defined in TS 38.215 [9]. |
ssb-FilterConfig SS Block based L3 filter configurations: Specifies L3 filter configurations for SS-RSRP, SS-RSRQ and SS-SINR measurement results from the L1 filter(s), as defined in TS 38.215 [9]. |
The IE RACH-ConfigCommon is used to specify the cell specific random-access parameters.
-- ASN1START -- TAG-RACH-CONFIGCOMMON-START RACH-ConfigCommon ::= SEQUENCE { rach-ConfigGeneric RACH-ConfigGeneric, totalNumberOfRA-Preambles INTEGER (1..63) OPTIONAL, -- Need S ssb-perRACH-OccasionAndCB-PreamblesPerSSB CHOICE { oneEighth ENUMERATED {n4,n8,n12,n16,n20,n24,n28,n32,n36,n40,n44,n48,n52,n56,n60,n64}, oneFourth ENUMERATED {n4,n8,n12,n16,n20,n24,n28,n32,n36,n40,n44,n48,n52,n56,n60,n64}, oneHalf ENUMERATED {n4,n8,n12,n16,n20,n24,n28,n32,n36,n40,n44,n48,n52,n56,n60,n64}, one ENUMERATED {n4,n8,n12,n16,n20,n24,n28,n32,n36,n40,n44,n48,n52,n56,n60,n64}, two ENUMERATED {n4,n8,n12,n16,n20,n24,n28,n32}, four INTEGER (1..16), eight INTEGER (1..8), sixteen INTEGER (1..4) } OPTIONAL, -- Need M groupBconfigured SEQUENCE { ra-Msg3SizeGroupA ENUMERATED {b56, b144, b208, b256, b282, b480, b640, b800, b1000, b72, spare6, spare5,spare4, spare3, spare2, spare1}, messagePowerOffsetGroupB ENUMERATED { minusinfinity, dB0, dB5, dB8, dB10, dB12, dB15, dB18}, numberOfRA-PreamblesGroupA INTEGER (1..64) } OPTIONAL, -- Need R ra-ContentionResolutionTimer ENUMERATED { sf8, sf16, sf24, sf32, sf40, sf48, sf56, sf64}, rsrp-ThresholdSSB RSRP-Range OPTIONAL, -- Need R rsrp-ThresholdSSB-SUL RSRP-Range OPTIONAL, -- Cond SUL prach-RootSequenceIndex CHOICE { l839 INTEGER (0..837), l139 INTEGER (0..137) }, msg1-SubcarrierSpacing SubcarrierSpacing OPTIONAL, -- Cond L139 restrictedSetConfig ENUMERATED {unrestrictedSet, restrictedSetTypeA, restrictedSetTypeB}, msg3-transformPrecoder ENUMERATED {enabled} OPTIONAL, -- Need R ... } -- TAG-RACH-CONFIGCOMMON-STOP -- ASN1STOP
The IE RACH-ConfigDedicated is used to specify the dedicated random access parameters.
-- ASN1START -- TAG-RACH-CONFIGDEDICATED-START RACH-ConfigDedicated ::= SEQUENCE {cfraParameters for contention free random access to a given target cell. If the field is absent, the UE performs contention based random access.CFRA OPTIONAL, -- Need S ra-Prioritization RA-Prioritization OPTIONAL, -- Need N ... } CFRA ::= SEQUENCE {occasionsRA occasions for contention free random access. If the field is absent, the UE uses the RA occasions configured in RACH-ConfigCommon in the first active UL BWP.SEQUENCE {rach-ConfigGenericConfiguration of contention free random access occasions for CFRA. The UE shall ignore preambleReceivedTargetPower, preambleTransMax, powerRampingStep, ra-ResponseWindow signaled within this field and use the corresponding values provided in RACH-ConfigCommon.RACH-ConfigGeneric,ssb-perRACH-OccasionNumber of SSBs per RACH occasion.ENUMERATED {oneEighth, oneFourth, oneHalf, one, two, four, eight, sixteen} OPTIONAL -- Cond Mandatory } OPTIONAL, -- Need S resources CHOICE {ssbThe ID of an SSB transmitted by this serving cell.SEQUENCE { ssb-ResourceList SEQUENCE (SIZE(1..maxRA-SSB-Resources)) OF CFRA-SSB-Resource,ra-ssb-OccasionMaskIndexExplicitly signalled PRACH Mask Index for RA Resource selection in TS 38.321 [3]. The mask is valid for all SSB resources signalled in ssb-ResourceList.INTEGER (0..15) }, csirs SEQUENCE { csirs-ResourceList SEQUENCE (SIZE(1..maxRA-CSIRS-Resources)) OF CFRA-CSIRS-Resource, rsrp-ThresholdCSI-RS RSRP-Range } }, ..., [[totalNumberOfRA-PreamblesTotal number of preambles used for contention free random access in the RACH resources defined in CFRA, excluding preambles used for other purposes (e.g. for SI request). If the field is absent but the field occasions is present, the UE may assume all the 64 preambles are for RA. The setting should be consistent with the setting of ssb-perRACH-Occasion, if present, i.e. it should be a multiple of the number of SSBs per RACH occasion.INTEGER (1..63) OPTIONAL -- Cond Occasions ]] } CFRA-SSB-Resource ::= SEQUENCE {ssbThe ID of an SSB transmitted by this serving cell.SSB-Index,ra-PreambleIndexThe preamble index that the UE shall use when performing CF-RA upon selecting the candidate beams identified by this SSB.INTEGER (0..63), ... } CFRA-CSIRS-Resource ::= SEQUENCE {csi-RSThe ID of a CSI-RS resource defined in the measurement object associated with this serving cell.CSI-RS-Index,ra-OccasionListRA occasions that the UE shall use when performing CF-RA upon selecting the candidate beam identified by this CSI-RS. The network ensures that the RA occasion indexes provided herein are also configured by prach-ConfigurationIndex and msg1-FDM. Each RACH occasion is sequentially numbered, first, in increasing order of frequency resource indexes for frequency multiplexed PRACH occasions; second, in increasing order of time resource indexes for time multiplexed PRACH occasions within a PRACH slot and Third, in increasing order of indexes for PRACH slots.SEQUENCE (SIZE(1..maxRA-OccasionsPerCSIRS)) OF INTEGER (0..maxRA-Occasions-1),ra-PreambleIndexThe preamble index that the UE shall use when performing CF-RA upon selecting the candidate beams identified by this SSB.INTEGER (0..63), ... } -- TAG-RACH-CONFIGDEDICATED-STOP -- ASN1STOP
RACH-ConfigCommon field descriptions |
---|
messagePowerOffsetGroupB Threshold for preamble selection. Value is in dB. Value minusinfinity corresponds to –infinity. Value dB0 corresponds to 0 dB, dB5 corresponds to 5 dB and so on. (see TS 38.321 [3], clause 5.1.2) |
msg1-SubcarrierSpacing Subcarrier spacing of PRACH (see TS 38.211 [16], clause 5.3.2). Only the values 15 or 30 kHz (FR1), and 60 or 120 kHz (FR2) are applicable. If absent, the UE applies the SCS as derived from the prach-ConfigurationIndex in RACH-ConfigGeneric (see tables Table 6.3.3.1-1, Table 6.3.3.2-2 and Table 6.3.3.2-3, TS 38.211 [16]). The value also applies to contention free random access (RACH-ConfigDedicated), to SI-request and to contention-based beam failure recovery (CB-BFR). But it does not apply for contention free beam failure recovery (CF-BFR) (see BeamFailureRecoveryConfig). |
msg3-transformPrecoder Enables the transform precoder for Msg3 transmission according to clause 6.1.3 of TS 38.214 [19]. If the field is absent, the UE disables the transformer precoder (see TS 38.213 [13], clause 8.3). |
numberOfRA-PreamblesGroupA The number of CB preambles per SSB in group A. This determines implicitly the number of CB preambles per SSB available in group B. (see TS 38.321 [3], clause 5.1.1). The setting should be consistent with the setting of ssb-perRACH-OccasionAndCB-PreamblesPerSSB. |
prach-RootSequenceIndex PRACH root sequence index (see TS 38.211 [16], clause 6.3.3.1). The value range depends on whether L=839 or L=139. The short/long preamble format indicated in this IE should be consistent with the one indicated in prach-ConfigurationIndex in the RACH-ConfigDedicated (if configured). |
ra-ContentionResolutionTimer The initial value for the contention resolution timer (see TS 38.321 [3], clause 5.1.5). Value sf8 corresponds to 8 subframes, value sf16 corresponds to 16 subframes, and so on. |
ra-Msg3SizeGroupA Transport Blocks size threshold in bits below which the UE shall use a contention-based RA preamble of group A. (see TS 38.321 [3], clause 5.1.2). |
rach-ConfigGeneric RACH parameters for both regular random access and beam failure recovery. |
restrictedSetConfig Configuration of an unrestricted set or one of two types of restricted sets, see TS 38.211 [16], clause 6.3.3.1. |
rsrp-ThresholdSSB UE may select the SS block and corresponding PRACH resource for path-loss estimation and (re)transmission based on SS blocks that satisfy the threshold (see TS 38.213 [13]). |
rsrp-ThresholdSSB-SUL The UE selects SUL carrier to perform random access based on this threshold (see TS 38.321 [3], clause 5.1.1). The value applies to all the BWPs. |
ssb-perRACH-OccasionAndCB-PreamblesPerSSB The meaning of this field is twofold: the CHOICE conveys the information about the number of SSBs per RACH occasion. Value oneEighth corresponds to one SSB associated with 8 RACH occasions, value oneFourth corresponds to one SSB associated with 4 RACH occasions, and so on. The ENUMERATED part indicates the number of Contention Based preambles per SSB. Value n4 corresponds to 4 Contention Based preambles per SSB, value n8 corresponds to 8 Contention Based preambles per SSB, and so on. The total number of CB preambles in a RACH occasion is given by CB-preambles-per-SSB * max(1, SSB-per-rach-occasion). See TS 38.213 [13]. |
totalNumberOfRA-Preambles Total number of preambles used for contention based and contention free random access in the RACH resources defined in RACH-ConfigCommon, excluding preambles used for other purposes (e.g. for SI request). If the field is absent, all 64 preambles are available for RA. The setting should be consistent with the setting of ssb-perRACH-OccasionAndCB-PreamblesPerSSB, i.e. it should be a multiple of the number of SSBs per RACH occasion. |
Conditional Presence | Explanation |
---|---|
L139 | The field is mandatory present if prach-RootSequenceIndex L=139, otherwise the field is absent, Need S. |
SUL | The field is mandatory present in initialUplinkBWPifsupplementaryUplinkis configured in ServingCellConfigCommonSIB or if supplementaryUplinkConfig is configured in ServingCellConfigCommon; otherwise, the field is absent. |
CFRA-CSIRS-Resource field descriptions |
---|
csi-RS The ID of a CSI-RS resource defined in the measurement object associated with this serving cell. |
ra-OccasionList RA occasions that the UE shall use when performing CF-RA upon selecting the candidate beam identified by this CSI-RS. The network ensures that the RA occasion indexes provided herein are also configured by prach-ConfigurationIndex and msg1-FDM. Each RACH occasion is sequentially numbered, first, in increasing order of frequency resource indexes for frequency multiplexed PRACH occasions; second, in increasing order of time resource indexes for time multiplexed PRACH occasions within a PRACH slot and Third, in increasing order of indexes for PRACH slots. |
ra-PreambleIndex The RA preamble index to use in the RA occasions associated with this CSI-RS. |
CFRA field descriptions |
---|
occasions RA occasions for contention free random access. If the field is absent, the UE uses the RA occasions configured in RACH-ConfigCommon in the first active UL BWP. |
ra-ssb-OccasionMaskIndex Explicitly signalled PRACH Mask Index for RA Resource selection in TS 38.321 [3]. The mask is valid for all SSB resources signalled in ssb-ResourceList. |
rach-ConfigGeneric Configuration of contention free random access occasions for CFRA. The UE shall ignore preambleReceivedTargetPower, preambleTransMax, powerRampingStep, ra-ResponseWindow signaled within this field and use the corresponding values provided in RACH-ConfigCommon. |
ssb-perRACH-Occasion Number of SSBs per RACH occasion. |
totalNumberOfRA-Preambles Total number of preambles used for contention free random access in the RACH resources defined in CFRA, excluding preambles used for other purposes (e.g. for SI request). If the field is absent but the field occasions is present, the UE may assume all the 64 preambles are for RA. The setting should be consistent with the setting of ssb-perRACH-Occasion, if present, i.e. it should be a multiple of the number of SSBs per RACH occasion. |
CFRA-SSB-Resource field descriptions |
---|
ra-PreambleIndex The preamble index that the UE shall use when performing CF-RA upon selecting the candidate beams identified by this SSB. |
ssb The ID of an SSB transmitted by this serving cell. |
RACH-ConfigDedicated field descriptions |
---|
cfra Parameters for contention free random access to a given target cell. If the field is absent, the UE performs contention based random access. |
ra-prioritization Parameters which apply for prioritized random access procedure to a given target cell (see TS 38.321 [3], clause 5.1.1). |
Conditional Presence | Explanation |
---|---|
Mandatory | The field is mandatory present. |
Occasions | The field is optionally present, Need S, if the field occasions is present, otherwise it is absent. |
The IE RACH-ConfigGeneric is used to specify the random-access parameters both for regular random access as well as for beam failure recovery.
-- ASN1START -- TAG-RACH-CONFIGGENERIC-START RACH-ConfigGeneric ::= SEQUENCE {prach-ConfigurationIndexPRACH configuration index. For prach-ConfigurationIndex configured under beamFailureRecovery-Config, the prach-ConfigurationIndex can only correspond to the short preamble format, (see TS 38.211 [16], clause 6.3.3.2).INTEGER (0..255),msg1-FDMThe number of PRACH transmission occasions FDMed in one time instance. (see TS 38.211 [16], clause 6.3.3.2).ENUMERATED {one, two, four, eight},msg1-FrequencyStartOffset of lowest PRACH transmission occasion in frequency domain with respective to PRB 0. The value is configured so that the corresponding RACH resource is entirely within the bandwidth of the UL BWP. (see TS 38.211 [16], clause 6.3.3.2).INTEGER (0..maxNrofPhysicalResourceBlocks-1),zeroCorrelationZoneConfigN-CS configuration, see Table 6.3.3.1-5 in TS 38.211 [16].INTEGER(0..15),preambleReceivedTargetPowerThe target power level at the network receiver side (see TS 38.213 [13], clause 7.4, TS 38.321 [3], clauses 5.1.2, 5.1.3). Only multiples of 2 dBm may be chosen (e.g. -202, -200, -198, ...).INTEGER (-202..-60),preambleTransMaxMax number of RA preamble transmission performed before declaring a failure (see TS 38.321 [3], clauses 5.1.4, 5.1.5).ENUMERATED {n3, n4, n5, n6, n7, n8, n10, n20, n50, n100, n200},powerRampingStepPower ramping steps for PRACH (see TS 38.321 [3],5.1.3).ENUMERATED {dB0, dB2, dB4, dB6},ra-ResponseWindowMsg2 (RAR) window length in number of slots. The network configures a value lower than or equal to 10 ms (see TS 38.321 [3], clause 5.1.4). UE ignores the field if included in SCellConfig.ENUMERATED {sl1, sl2, sl4, sl8, sl10, sl20, sl40, sl80}, ... } -- TAG-RACH-CONFIGGENERIC-STOP -- ASN1STOP
RACH-ConfigGeneric field descriptions |
---|
msg1-FDM The number of PRACH transmission occasions FDMed in one time instance. (see TS 38.211 [16], clause 6.3.3.2). |
msg1-FrequencyStart Offset of lowest PRACH transmission occasion in frequency domain with respective to PRB 0. The value is configured so that the corresponding RACH resource is entirely within the bandwidth of the UL BWP. (see TS 38.211 [16], clause 6.3.3.2). |
powerRampingStep Power ramping steps for PRACH (see TS 38.321 [3],5.1.3). |
prach-ConfigurationIndex PRACH configuration index. For prach-ConfigurationIndex configured under beamFailureRecovery-Config, the prach-ConfigurationIndex can only correspond to the short preamble format, (see TS 38.211 [16], clause 6.3.3.2). |
preambleReceivedTargetPower The target power level at the network receiver side (see TS 38.213 [13], clause 7.4, TS 38.321 [3], clauses 5.1.2, 5.1.3). Only multiples of 2 dBm may be chosen (e.g. -202, -200, -198, ...). |
preambleTransMax Max number of RA preamble transmission performed before declaring a failure (see TS 38.321 [3], clauses 5.1.4, 5.1.5). |
ra-ResponseWindow Msg2 (RAR) window length in number of slots. The network configures a value lower than or equal to 10 ms (see TS 38.321 [3], clause 5.1.4). UE ignores the field if included in SCellConfig. |
zeroCorrelationZoneConfig N-CS configuration, see Table 6.3.3.1-5 in TS 38.211 [16]. |
The IE RA-Prioritization is used to configure prioritized random access.
-- ASN1START -- TAG-RA-PRIORITIZATION-START RA-Prioritization ::= SEQUENCE { powerRampingStepHighPriority ENUMERATED {dB0, dB2, dB4, dB6},scalingFactorBIScaling factor for the backoff indicator (BI) for the prioritized random access procedure. (see TS 38.321 [3], clause 5.1.4). Value zero corresponds to 0, value dot25 corresponds to 0.25 and so on.ENUMERATED {zero, dot25, dot5, dot75} OPTIONAL, -- Need R ... } -- TAG-RA-PRIORITIZATION-STOP -- ASN1STOP
RA-Prioritization field descriptions |
---|
powerRampingStepHighPrioritiy Power ramping step applied for prioritized random access procedure. |
scalingFactorBI Scaling factor for the backoff indicator (BI) for the prioritized random access procedure. (see TS 38.321 [3], clause 5.1.4). Value zero corresponds to 0, value dot25 corresponds to 0.25 and so on. |
The IE RadioBearerConfig is used to add, modify and release signalling and/or data radio bearers. Specifically, this IE carries the parameters for PDCP and, if applicable, SDAP entities for the radio bearers.
-- ASN1START -- TAG-RADIOBEARERCONFIG-START RadioBearerConfig ::= SEQUENCE { srb-ToAddModList SRB-ToAddModList OPTIONAL, -- Cond HO-Conn srb3-ToRelease ENUMERATED{true} OPTIONAL, -- Need N drb-ToAddModList DRB-ToAddModList OPTIONAL, -- Cond HO-toNR drb-ToReleaseList DRB-ToReleaseList OPTIONAL, -- Need N securityConfig SecurityConfig OPTIONAL, -- Need M ... } SRB-ToAddModList ::= SEQUENCE (SIZE (1..2)) OF SRB-ToAddMod SRB-ToAddMod ::= SEQUENCE { srb-Identity SRB-Identity, reestablishPDCP ENUMERATED{true} OPTIONAL, -- Need N discardOnPDCP ENUMERATED{true} OPTIONAL, -- Need N pdcp-Config PDCP-Config OPTIONAL, -- Cond PDCP ... } DRB-ToAddModList ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-ToAddMod DRB-ToAddMod ::= SEQUENCE { cnAssociation CHOICE { eps-BearerIdentity INTEGER (0..15), sdap-Config SDAP-Config } OPTIONAL, -- Cond DRBSetup drb-Identity DRB-Identity, reestablishPDCP ENUMERATED{true} OPTIONAL, -- Need N recoverPDCP ENUMERATED{true} OPTIONAL, -- Need N pdcp-Config PDCP-Config OPTIONAL, -- Cond PDCP ... } DRB-ToReleaseList ::= SEQUENCE (SIZE (1..maxDRB)) OF DRB-Identity SecurityConfig ::= SEQUENCE { securityAlgorithmConfig SecurityAlgorithmConfig OPTIONAL, -- Cond RBTermChange1 keyToUse ENUMERATED{master, secondary} OPTIONAL, -- Cond RBTermChange ... } -- TAG-RADIOBEARERCONFIG-STOP -- ASN1STOP
The IE RadioLinkMonitoringConfig is used to configure radio link monitoring for detection of beam- and/or cell radio link failure. See also TS 38.321 [3], clause 5.1.1.
-- ASN1START -- TAG-RADIOLINKMONITORINGCONFIG-START RadioLinkMonitoringConfig ::= SEQUENCE {failureDetectionResourcesToAddModListA list of reference signals for detecting beam failure and/or cell level radio link failure (RLF). The limits of the reference signals that the network can configure are specified in TS 38.213 [13], table 5-1. The network configures at most two detectionResources per BWP for the purpose beamFailure or both. If no RSs are provided for the purpose of beam failure detection, the UE performs beam monitoring based on the activated TCI-State for PDCCH as described in TS 38.213 [13], clause 6. If no RSs are provided in this list for the purpose of RLF detection, the UE performs Cell-RLM based on the activated TCI-State of PDCCH as described in TS 38.213 [13], clause 5. The network ensures that the UE has a suitable set of reference signals for performing cell-RLM.SEQUENCE (SIZE(1..maxNrofFailureDetectionResources)) OF RadioLinkMonitoringRS OPTIONAL, -- Need N failureDetectionResourcesToReleaseList SEQUENCE (SIZE(1..maxNrofFailureDetectionResources)) OF RadioLinkMonitoringRS-Id OPTIONAL, -- Need NbeamFailureInstanceMaxCountThis field determines after how many beam failure events the UE triggers beam failure recovery (see TS 38.321 [3], clause 5.17). Value n1 corresponds to 1 beam failure instance, value n2 corresponds to 2 beam failure instances and so on.ENUMERATED {n1, n2, n3, n4, n5, n6, n8, n10} OPTIONAL, -- Need RbeamFailureDetectionTimerTimer for beam failure detection (see TS 38.321 [3], clause 5.17). See also the BeamFailureRecoveryConfig IE. Value in number of "Qout,LR reporting periods of Beam Failure Detection" Reference Signal (see TS 38.213 [13], clause 6). Value pbfd1 corresponds to 1 Qout,LR reporting period of Beam Failure Detection Reference Signal, value pbfd2 corresponds to 2 Qout,LR reporting periods of Beam Failure Detection Reference Signal and so on.ENUMERATED {pbfd1, pbfd2, pbfd3, pbfd4, pbfd5, pbfd6, pbfd8, pbfd10} OPTIONAL, -- Need R ... } RadioLinkMonitoringRS ::= SEQUENCE { radioLinkMonitoringRS-Id RadioLinkMonitoringRS-Id,purposeDetermines whether the UE shall monitor the associated reference signal for the purpose of cell- and/or beam failure detection.ENUMERATED {beamFailure, rlf, both},detectionResourceA reference signal that the UE shall use for radio link monitoring or beam failure detection (depending on the indicated purpose).CHOICE { ssb-Index SSB-Index, csi-RS-Index NZP-CSI-RS-ResourceId }, ... } -- TAG-RADIOLINKMONITORINGCONFIG-STOP -- ASN1STOP
DRB-ToAddMod field descriptions |
---|
cnAssociation Indicates if the bearer is associated with the eps-bearerIdentity (when connected to EPC) or sdap-Config (when connected to 5GC). |
drb-Identity In case of DC, the DRB identity is unique within the scope of the UE, i.e. an MCG DRB cannot use the same value as a split DRB. For a split DRB the same identity is used for the MCG and SCG parts of the configuration. |
eps-BearerIdentity The EPS bearer ID determines the EPS bearer. |
reestablishPDCP Indicates that PDCP should be re-established. Network sets this to truewhenever the security key used for this radio bearer changes. Key change could for example be due to termination point change for the bearer,reconfiguration with sync, resuming an RRC connection, or the first reconfiguration after reestablishment. It is also applicable for LTE procedures when NR PDCP is configured. |
recoverPDCP Indicates that PDCP should perform recovery according to TS38.323 [5]. |
sdap-Config The SDAP configuration determines how to map QoS flows to DRBs when NR or E-UTRA connects to the 5GC and presence/absence of UL/DL SDAP headers. |
RadioBearerConfig field descriptions |
---|
securityConfig Indicates the security algorithm and key to use for the signalling and data radio bearers configured with the list in this IE RadioBearerConfig. When the field is not includedafter AS security has been activated, the UE shall continue to use the currently configured keyToUse and security algorithm for the radio bearers reconfigured with the lists in this IE RadioBearerConfig. The field is not included when configuring SRB1 before AS security is activated. |
srb3-ToRelease Release SRB3. SRB3 release can only be done over SRB1 and only at SCG release and reconfiguration with sync. |
SecurityConfig field descriptions |
---|
keyToUse Indicates if the bearers configured with the list in this IE RadioBearerConfig are using the master key or the secondary key for deriving ciphering and/or integrity protection keys. For MR-DC, network should not configure SRB1 and SRB2 with secondary key and SRB3 with the master key. When the field is not included, the UE shall continue to use the currently configured keyToUse for the radio bearers reconfigured with the lists in this IE RadioBearerConfig. |
securityAlgorithmConfig Indicates the security algorithm for the signalling and data radio bearers configured with the list in this IE RadioBearerConfig. When the field is not included, the UE shall continue to use the currently configured security algorithm for the radio bearers reconfigured with the lists in this IE RadioBearerConfig. |
SRB-ToAddMod field descriptions |
---|
discardOnPDCP Indicates that PDCP should discard stored SDU and PDU according to TS38.323 [5]. |
reestablishPDCP Indicates that PDCP should be re-established. Network sets this to truewhenever the security key used for this radio bearer changes. Key change could for example be due to reconfiguration with sync, for SRB2 when resuming an RRC connection, or at the first reconfiguration after RRC connection reestablishment in NR. For SRB1, when resuming an RRC connection, or at the first reconfiguration after RRC connection reestablishment in NR, the network does not set this field to true. For LTE SRBs using NR PDCP, it could be for handover, RRC connection reestablishment or resume. |
srb-Identity Value 1 is applicable for SRB1 only. Value 2 is applicable for SRB2 only. Value 3 is applicable for SRB3 only. |
Conditional Presence | Explanation |
---|---|
RBTermChange | The field is mandatory present in case of: -set up of signalling, -data radio bearer and change of termination point for the radio bearer between MN and SN. It is optionally present otherwise, Need S. |
RBTermChange1 | The field is mandatory present in case of: -set up of signalling and data radio bearer, -change of termination point for the radio bearer between MN and SN, -handover from E-UTRA/EPC or E-UTRA/5GC to NR, -handover from NR or E-UTRA/EPC to E-UTRA/5GC if the UE supports NGEN-DC. It is optionally present otherwise, Need S. |
PDCP | The field is mandatory present if the corresponding DRB is being setup or corresponding DRB is reconfigured with NR PDCP or corresponding SRB associated with two RLC entities is being setup or if the number of RLC bearers associated with the DRB or SRB is changed.The field is optionally present, Need S, if the corresponding SRB associated with one RLC entity is being setup or corresponding SRB is reconfigured with NR PDCP; otherwise the field is optionally present, need M. |
DRBSetup | The field is mandatory present if the corresponding DRB is being setup; otherwise the field is optionally present, need M. |
HO-Conn | The field is mandatory present -in case of inter-system handover from E-UTRA/EPC to E-UTRA/5GC or NR, -or when the fullConfig is included in the RRCReconfiguration messageand NE-DC/NR-DC is not configured, -or in case of RRCSetup. Otherwise the field is optionally present, need N. Upon RRCSetup, only SRB1 can be present. |
HO-toNR | The field is mandatory present -in case of inter-system handover from E-UTRA/EPC to E-UTRA/5GC or NR, -or when the fullConfig is included in the RRCReconfiguration message and NE-DC/NR-DC is not configured. In case of RRCSetup, the field is absent; otherwise the field is optionally present, need N. |
RadioLinkMonitoringConfig field descriptions |
---|
beamFailureDetectionTimer Timer for beam failure detection (see TS 38.321 [3], clause 5.17). See also the BeamFailureRecoveryConfig IE. Value in number of "Qout,LR reporting periods of Beam Failure Detection" Reference Signal (see TS 38.213 [13], clause 6). Value pbfd1 corresponds to 1 Qout,LR reporting period of Beam Failure Detection Reference Signal, value pbfd2 corresponds to 2 Qout,LR reporting periods of Beam Failure Detection Reference Signal and so on. |
beamFailureInstanceMaxCount This field determines after how many beam failure events the UE triggers beam failure recovery (see TS 38.321 [3], clause 5.17). Value n1 corresponds to 1 beam failure instance, value n2 corresponds to 2 beam failure instances and so on. |
failureDetectionResourcesToAddModList A list of reference signals for detecting beam failure and/or cell level radio link failure (RLF). The limits of the reference signals that the network can configure are specified in TS 38.213 [13], table 5-1. The network configures at most two detectionResources per BWP for the purpose beamFailure or both. If no RSs are provided for the purpose of beam failure detection, the UE performs beam monitoring based on the activated TCI-State for PDCCH as described in TS 38.213 [13], clause 6. If no RSs are provided in this list for the purpose of RLF detection, the UE performs Cell-RLM based on the activated TCI-State of PDCCH as described in TS 38.213 [13], clause 5. The network ensures that the UE has a suitable set of reference signals for performing cell-RLM. |
RadioLinkMonitoringRS field descriptions |
---|
detectionResource A reference signal that the UE shall use for radio link monitoring or beam failure detection (depending on the indicated purpose). |
purpose Determines whether the UE shall monitor the associated reference signal for the purpose of cell- and/or beam failure detection. |
The IE RadioLinkMonitoringRS-Id is used to identify one RadioLinkMonitoringRS.
The IE RAN-AreaCode is used to identify a RAN area within the scope of a tracking area.
The IE RateMatchPattern is used to configure one rate matching pattern for PDSCH,see TS 38.214 [19], clause 5.1.4.1.
-- ASN1START -- TAG-RATEMATCHPATTERN-START RateMatchPattern ::= SEQUENCE { rateMatchPatternId RateMatchPatternId, patternType CHOICE {bitmapsIndicates rate matching pattern by a pair of bitmaps resourceBlocks and symbolsInResourceBlock to define the rate match pattern within one or two slots, and a third bitmap periodicityAndPattern to define the repetition pattern with which the pattern defined by the above bitmap pair occurs.SEQUENCE {resourceBlocksA resource block level bitmap in the frequency domain. A bit in the bitmap set to 1 indicates that the UE shall apply rate matching in the corresponding resource block in accordance with the symbolsInResourceBlock bitmap. If used as cell-level rate matching pattern, the bitmap identifies "common resource blocks (CRB)". If used as BWP-level rate matching pattern, the bitmap identifies "physical resource blocks" inside the BWP. The first/ leftmost bit corresponds to resource block 0, and so on (see TS 38.214 [19], clause 5.1.4.1).BIT STRING (SIZE (275)),symbolsInResourceBlockA symbol level bitmap in time domain. It indicates with a bit set to true that the UE shall rate match around the corresponding symbol. This pattern recurs (in time domain) with the configured periodicityAndPattern (see TS 38.214 [19], clause 5.1.4.1). For oneSlot, if ECP is configured, the first 12 bits represent the symbols within the slot and the last two bits within the bitstring are ignored by the UE; Otherwise, the 14 bits represent the symbols within the slot. For twoSlots, if ECP is configured, the first 12 bits represent the symbols within the first slot and the next 12 bits represent the symbols in the second slot and the last four bits within the bit string are ignored by the UE; Otherwise, the first 14 bits represent the symbols within the first slot and the next 14 bits represent the symbols in the second slot. For the bits representing symbols in a slot, the most significant bit of the bit string represents the first symbol in the slot and the second most significant bit represents the second symbol in the slot and so on.CHOICE { oneSlot BIT STRING (SIZE (14)), twoSlots BIT STRING (SIZE (28)) },periodicityAndPatternA time domain repetition pattern at which the pattern defined by symbolsInResourceBlock and resourceBlocks recurs. This slot pattern repeats itself continuously. Absence of this field indicates the value n1 (see TS 38.214 [19], clause 5.1.4.1).CHOICE { n2 BIT STRING (SIZE (2)), n4 BIT STRING (SIZE (4)), n5 BIT STRING (SIZE (5)), n8 BIT STRING (SIZE (8)), n10 BIT STRING (SIZE (10)), n20 BIT STRING (SIZE (20)), n40 BIT STRING (SIZE (40)) } OPTIONAL, -- Need S ... },controlResourceSetThis ControlResourceSet is used as a PDSCH rate matching pattern, i.e., PDSCH reception rate matches around it. In frequency domain, the resource is determined by the frequency domain resource of the CORESET with the corresponding CORESET ID. Time domain resource is determined by the parameters of the associated search space of the CORESET.ControlResourceSetId },subcarrierSpacingThe SubcarrierSpacing for this resource pattern. If the field is absent, the UE applies the SCS of the associated BWP. The value kHz15 corresponds to µ=0, the valuekHz30corresponds to µ=1, and so on. Only the values 15 kHz, 30 kHz or 60 kHz (FR1), and 60 kHz or 120 kHz (FR2) are applicable (see TS 38.214 [19], clause 5.1.4.1).SubcarrierSpacing OPTIONAL, -- Cond CellLevel dummy ENUMERATED { dynamic, semiStatic }, ... } -- TAG-RATEMATCHPATTERN-STOP -- ASN1STOP
RateMatchPattern field descriptions |
---|
bitmaps Indicates rate matching pattern by a pair of bitmaps resourceBlocks and symbolsInResourceBlock to define the rate match pattern within one or two slots, and a third bitmap periodicityAndPattern to define the repetition pattern with which the pattern defined by the above bitmap pair occurs. |
controlResourceSet This ControlResourceSet is used as a PDSCH rate matching pattern, i.e., PDSCH reception rate matches around it. In frequency domain, the resource is determined by the frequency domain resource of the CORESET with the corresponding CORESET ID. Time domain resource is determined by the parameters of the associated search space of the CORESET. |
periodicityAndPattern A time domain repetition pattern at which the pattern defined by symbolsInResourceBlock and resourceBlocks recurs. This slot pattern repeats itself continuously. Absence of this field indicates the value n1 (see TS 38.214 [19], clause 5.1.4.1). |
resourceBlocks A resource block level bitmap in the frequency domain. A bit in the bitmap set to 1 indicates that the UE shall apply rate matching in the corresponding resource block in accordance with the symbolsInResourceBlock bitmap. If used as cell-level rate matching pattern, the bitmap identifies "common resource blocks (CRB)". If used as BWP-level rate matching pattern, the bitmap identifies "physical resource blocks" inside the BWP. The first/ leftmost bit corresponds to resource block 0, and so on (see TS 38.214 [19], clause 5.1.4.1). |
subcarrierSpacing The SubcarrierSpacing for this resource pattern. If the field is absent, the UE applies the SCS of the associated BWP. The value kHz15 corresponds to µ=0, the valuekHz30corresponds to µ=1, and so on. Only the values 15 kHz, 30 kHz or 60 kHz (FR1), and 60 kHz or 120 kHz (FR2) are applicable (see TS 38.214 [19], clause 5.1.4.1). |
symbolsInResourceBlock A symbol level bitmap in time domain. It indicates with a bit set to true that the UE shall rate match around the corresponding symbol. This pattern recurs (in time domain) with the configured periodicityAndPattern (see TS 38.214 [19], clause 5.1.4.1). For oneSlot, if ECP is configured, the first 12 bits represent the symbols within the slot and the last two bits within the bitstring are ignored by the UE; Otherwise, the 14 bits represent the symbols within the slot. For twoSlots, if ECP is configured, the first 12 bits represent the symbols within the first slot and the next 12 bits represent the symbols in the second slot and the last four bits within the bit string are ignored by the UE; Otherwise, the first 14 bits represent the symbols within the first slot and the next 14 bits represent the symbols in the second slot. For the bits representing symbols in a slot, the most significant bit of the bit string represents the first symbol in the slot and the second most significant bit represents the second symbol in the slot and so on. |
Conditional Presence | Explanation |
---|---|
CellLevel | The field is mandatory present if the RateMatchPattern is defined on cell level. The field is absent when the RateMatchPattern is defined on BWP level. If the RateMatchPattern is defined on BWP level, the UE applies the SCS of the BWP. |
The IE RateMatchPatternId identifies one RateMatchPattern (see TS 38.214 [19], clause 5.1.4.1).
The IE RateMatchPatternLTE-CRS is used to configure a pattern to rate match around LTE CRS. See TS 38.214 [19], clause 5.1.4.2.
-- ASN1START -- TAG-RATEMATCHPATTERNLTE-CRS-START RateMatchPatternLTE-CRS ::= SEQUENCE {carrierFreqDLCenter of the LTE carrier (see TS 38.214 [19], clause 5.1.4.2).INTEGER (0..16383),carrierBandwidthDLBW of the LTE carrier in number of PRBs (see TS 38.214 [19], clause 5.1.4.2).ENUMERATED {n6, n15, n25, n50, n75, n100, spare2, spare1},mbsfn-SubframeConfigListLTE MBSFN subframe configuration (see TS 38.214 [19], clause 5.1.4.2).EUTRA-MBSFN-SubframeConfigList OPTIONAL, -- Need MnrofCRS-PortsNumber of LTE CRS antenna port to rate-match around (see TS 38.214 [19], clause 5.1.4.2).ENUMERATED {n1, n2, n4},v-ShiftShifting value v-shift in LTE to rate match around LTE CRS (see TS 38.214 [19], clause 5.1.4.2).ENUMERATED {n0, n1, n2, n3, n4, n5} } -- TAG-RATEMATCHPATTERNLTE-CRS-STOP -- ASN1STOP
RateMatchPatternLTE-CRS field descriptions |
---|
carrierBandwidthDL BW of the LTE carrier in number of PRBs (see TS 38.214 [19], clause 5.1.4.2). |
carrierFreqDL Center of the LTE carrier (see TS 38.214 [19], clause 5.1.4.2). |
mbsfn-SubframeConfigList LTE MBSFN subframe configuration (see TS 38.214 [19], clause 5.1.4.2). |
nrofCRS-Ports Number of LTE CRS antenna port to rate-match around (see TS 38.214 [19], clause 5.1.4.2). |
v-Shift Shifting value v-shift in LTE to rate match around LTE CRS (see TS 38.214 [19], clause 5.1.4.2). |
The IE RejectWaitTime is used to provide the value in seconds for timer T302.
The IE ReportConfigId is used to identify a measurement reporting configuration.
The IE ReportConfigInterRAT specifies criteria for triggering of an inter-RAT measurement reporting event. The inter-RAT measurement reporting events for E-UTRA are labelled BN with N equal to 1, 2 and so on.
-- ASN1START -- TAG-REPORTCONFIGINTERRAT-START ReportConfigInterRAT ::= SEQUENCE { reportType CHOICE { periodical PeriodicalReportConfigInterRAT, eventTriggered EventTriggerConfigInterRAT, reportCGI ReportCGI-EUTRA, ..., reportSFTD ReportSFTD-EUTRA } } ReportCGI-EUTRA ::= SEQUENCE { cellForWhichToReportCGI EUTRA-PhysCellId, ... } ReportSFTD-EUTRA ::= SEQUENCE { reportSFTD-Meas BOOLEAN, reportRSRP BOOLEAN, ... } EventTriggerConfigInterRAT ::= SEQUENCE { eventId CHOICE { eventB1 SEQUENCE { b1-ThresholdEUTRA MeasTriggerQuantityEUTRA, reportOnLeave BOOLEAN, hysteresis Hysteresis, timeToTrigger TimeToTrigger, ... }, eventB2 SEQUENCE { b2-Threshold1 MeasTriggerQuantity, b2-Threshold2EUTRA MeasTriggerQuantityEUTRA, reportOnLeave BOOLEAN, hysteresis Hysteresis, timeToTrigger TimeToTrigger, ... }, ... }, rsType NR-RS-Type, reportInterval ReportInterval, reportAmount ENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity}, reportQuantity MeasReportQuantity, maxReportCells INTEGER (1..maxCellReport), ... } PeriodicalReportConfigInterRAT ::= SEQUENCE { reportInterval ReportInterval, reportAmount ENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity}, reportQuantity MeasReportQuantity, maxReportCells INTEGER (1..maxCellReport), ... } -- TAG-REPORTCONFIGINTERRAT-STOP -- ASN1STOP
The IE ReportConfigNR specifies criteria for triggering of an NR measurement reporting event. Measurement reporting events are based on cell measurement results, which can either be derived based on SS/PBCH block or CSI-RS. These events are labelled AN with N equal to 1, 2 and so on.
-- ASN1START -- TAG-REPORTCONFIGNR-START ReportConfigNR ::= SEQUENCE {reportTypeType of the configured measurement report. In MR-DC, network does not configure report of type reportCGI using SRB3.CHOICE { periodical PeriodicalReportConfig, eventTriggered EventTriggerConfig, ..., reportCGI ReportCGI, reportSFTD ReportSFTD-NR } } ReportCGI ::= SEQUENCE { cellForWhichToReportCGI PhysCellId, ... } ReportSFTD-NR ::= SEQUENCE {reportSFTD-MeasIndicates whether UE is required to perform SFTD measurement between PCell and NR PSCell in NR-DC.BOOLEAN,reportRSRPIndicates whether UE is required to include RSRP result of NR PSCell or NR neighbour cells in SFTD measurement result, derived based on SSB. If it is set to true, the network should ensure that ssb-ConfigMobilityis included in the measurement object for NR PSCell or NR neighbour cells.BOOLEAN, ..., [[reportSFTD-NeighMeasIndicates whether UE is required to perform SFTD measurement between PCell and NR neighbour cells in NR standalone. The network does not include this field if reportSFTD-Meas is set to true.ENUMERATED {true} OPTIONAL, -- Need Rdrx-SFTD-NeighMeasIndicates that the UE shall use available idle periods (i.e. DRX off periods) for the SFTD measurement in NR standalone. The network only includes drx-SFTD-NeighMeas field when reprtSFTD-NeighMeas is set to true.ENUMERATED {true} OPTIONAL, -- Need R cellsForWhichToReportSFTD SEQUENCE (SIZE (1..maxCellSFTD)) OF PhysCellId OPTIONAL -- Need R ]] } EventTriggerConfig::= SEQUENCE {eventIdChoice of NR event triggered reporting criteria.CHOICE { eventA1 SEQUENCE { a1-Threshold MeasTriggerQuantity,reportOnLeaveIndicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.BOOLEAN, hysteresis Hysteresis,timeToTriggerTime during which specific criteria for the event needs to be met in order to trigger a measurement report.TimeToTrigger }, eventA2 SEQUENCE { a2-Threshold MeasTriggerQuantity,reportOnLeaveIndicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.BOOLEAN, hysteresis Hysteresis,timeToTriggerTime during which specific criteria for the event needs to be met in order to trigger a measurement report.TimeToTrigger }, eventA3 SEQUENCE { a3-Offset MeasTriggerQuantityOffset,reportOnLeaveIndicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.BOOLEAN, hysteresis Hysteresis,timeToTriggerTime during which specific criteria for the event needs to be met in order to trigger a measurement report.TimeToTrigger,useWhiteCellListIndicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1.BOOLEAN }, eventA4 SEQUENCE { a4-Threshold MeasTriggerQuantity,reportOnLeaveIndicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.BOOLEAN, hysteresis Hysteresis,timeToTriggerTime during which specific criteria for the event needs to be met in order to trigger a measurement report.TimeToTrigger,useWhiteCellListIndicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1.BOOLEAN }, eventA5 SEQUENCE { a5-Threshold1 MeasTriggerQuantity, a5-Threshold2 MeasTriggerQuantity,reportOnLeaveIndicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.BOOLEAN, hysteresis Hysteresis,timeToTriggerTime during which specific criteria for the event needs to be met in order to trigger a measurement report.TimeToTrigger,useWhiteCellListIndicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1.BOOLEAN }, eventA6 SEQUENCE { a6-Offset MeasTriggerQuantityOffset,reportOnLeaveIndicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1.BOOLEAN, hysteresis Hysteresis,timeToTriggerTime during which specific criteria for the event needs to be met in order to trigger a measurement report.TimeToTrigger,useWhiteCellListIndicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1.BOOLEAN }, ... }, rsType NR-RS-Type, reportInterval ReportInterval,reportAmountNumber of measurement reports applicable for eventTriggered as well as for periodical report typesENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity},reportQuantityCellThe cell measurement quantities to be included in the measurement report.MeasReportQuantity,maxReportCellsMax number of non-serving cells to include in the measurement report.INTEGER (1..maxCellReport),reportQuantityRS-IndexesIndicates which measurement information per RS index the UE shall include in the measurement report.MeasReportQuantity OPTIONAL, -- Need RmaxNrofRS-IndexesToReportMax number of RS indexes to include in the measurement report.INTEGER (1..maxNrofIndexesToReport) OPTIONAL, -- Need R includeBeamMeasurements BOOLEAN,reportAddNeighMeasIndicates that the UE shall include the best neighbour cells per serving frequency.ENUMERATED {setup} OPTIONAL, -- Need R ... } PeriodicalReportConfig ::= SEQUENCE { rsType NR-RS-Type, reportInterval ReportInterval,reportAmountNumber of measurement reports applicable for eventTriggered as well as for periodical report typesENUMERATED {r1, r2, r4, r8, r16, r32, r64, infinity},reportQuantityCellThe cell measurement quantities to be included in the measurement report.MeasReportQuantity,maxReportCellsMax number of non-serving cells to include in the measurement report.INTEGER (1..maxCellReport),reportQuantityRS-IndexesIndicates which measurement information per RS index the UE shall include in the measurement report.MeasReportQuantity OPTIONAL, -- Need RmaxNrofRS-IndexesToReportMax number of RS indexes to include in the measurement report.INTEGER (1..maxNrofIndexesToReport) OPTIONAL, -- Need R includeBeamMeasurements BOOLEAN,useWhiteCellListIndicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1.BOOLEAN, ... } NR-RS-Type ::= ENUMERATED {ssb, csi-rs} MeasTriggerQuantity ::= CHOICE { rsrp RSRP-Range, rsrq RSRQ-Range, sinr SINR-Range } MeasTriggerQuantityOffset ::= CHOICE { rsrp INTEGER (-30..30), rsrq INTEGER (-30..30), sinr INTEGER (-30..30) } MeasReportQuantity ::= SEQUENCE { rsrp BOOLEAN, rsrq BOOLEAN, sinr BOOLEAN } -- TAG-REPORTCONFIGNR-STOP -- ASN1STOP
ReportConfigInterRAT field descriptions |
---|
reportType Type of the configured measurement report. In (NG)EN-DC and NR-DC, network does not configure report of type ReportCGI-EUTRAfor SCG. |
EventTriggerConfigInterRATfield descriptions |
---|
b2-Threshold1 NR threshold to be used in inter RAT measurement report triggering condition for event B2. |
bN-ThresholdEUTRA E-UTRA threshold value associated with the selected trigger quantity (RSRP, RSRQ, SINR) to be used in inter RAT measurement report triggering condition for event number bN.In the same eventB2, the network configures the same CHOICE name (rsrp, rsrq or sinr) for the MeasTriggerQuantity of the b2-Threshold1 and for the MeasTriggerQuantityEUTRA of the b2-Threshold2EUTRA. |
eventId Choice of inter RAT event triggered reporting criteria. |
maxReportCells Max number of non-serving cells to include in the measurement report. |
reportAmount Number of measurement reports applicable for eventTriggered as well as for periodical report types |
reportOnLeave Indicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1. |
reportQuantity The cell measurement quantities to be included in the measurement report. |
timeToTrigger Time during which specific criteria for the event needs to be met in order to trigger a measurement report. |
PeriodicalReportConfigInterRAT field descriptions |
---|
maxReportCells Max number of non-serving cells to include in the measurement report. |
reportAmount Number of measurement reports applicable for eventTriggered as well as for periodical report types |
reportQuantity The cell measurement quantities to be included in the measurement report. |
ReportConfigNRfield descriptions |
---|
reportType Type of the configured measurement report. In MR-DC, network does not configure report of type reportCGI using SRB3. |
EventTriggerConfig field descriptions |
---|
a3-Offset/a6-Offset Offset value(s) to be used in NR measurement report triggering condition for event a3/a6. The actual value is field value * 0.5 dB. |
aN-ThresholdM Threshold value associated to the selected trigger quantity (e.g. RSRP, RSRQ, SINR) per RS Type (e.g. SS/PBCH block, CSI-RS) to be used in NR measurement report triggering condition for event number aN. If multiple thresholds are defined for event number aN, the thresholds are differentiated by M. The network configures aN-Threshold1 only for events A1, A2, A4, A5 and a5-Threshold2 only for event A5. In the same eventA5, the network configures the same quantity for the MeasTriggerQuantity of the a5-Threshold1 and for the MeasTriggerQuantity of the a5-Threshold2. |
eventId Choice of NR event triggered reporting criteria. |
maxNrofRS-IndexesToReport Max number of RS indexes to include in the measurement report for A1-A6 events. |
maxReportCells Max number of non-serving cells to include in the measurement report. |
reportAddNeighMeas Indicates that the UE shall include the best neighbour cells per serving frequency. |
reportAmount Number of measurement reports applicable for eventTriggered as well as for periodical report types. |
reportOnLeave Indicates whether or not the UE shall initiate the measurement reporting procedure when the leaving condition is met for a cell in cellsTriggeredList, as specified in 5.5.4.1. |
reportQuantityCell The cell measurement quantities to be included in the measurement report. |
reportQuantityRS-Indexes Indicates which measurement information per RS index the UE shall include in the measurement report. |
timeToTrigger Time during which specific criteria for the event needs to be met in order to trigger a measurement report. |
useWhiteCellList Indicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1. |
PeriodicalReportConfig field descriptions |
---|
maxNrofRS-IndexesToReport Max number of RS indexes to include in the measurement report. |
maxReportCells Max number of non-serving cells to include in the measurement report. |
reportAmount Number of measurement reports applicable for eventTriggered as well as for periodical report types |
reportQuantityCell The cell measurement quantities to be included in the measurement report. |
reportQuantityRS-Indexes Indicates which measurement information per RS index the UE shall include in the measurement report. |
useWhiteCellList Indicates whether only the cells included in the white-list of the associated measObject are applicable as specified in 5.5.4.1. |
ReportSFTD-NR field descriptions |
---|
cellForWhichToReportSFTD Indicates the target NR neighbour cells for SFTD measurement between PCell and NR neighbour cells. |
drx-SFTD-NeighMeas Indicates that the UE shall use available idle periods (i.e. DRX off periods) for the SFTD measurement in NR standalone. The network only includes drx-SFTD-NeighMeas field when reprtSFTD-NeighMeas is set to true. |
reportSFTD-Meas Indicates whether UE is required to perform SFTD measurement between PCell and NR PSCell in NR-DC. |
reportSFTD-NeighMeas Indicates whether UE is required to perform SFTD measurement between PCell and NR neighbour cells in NR standalone. The network does not include this field if reportSFTD-Meas is set to true. |
reportRSRP Indicates whether UE is required to include RSRP result of NR PSCell or NR neighbour cells in SFTD measurement result, derived based on SSB. If it is set to true, the network should ensure that ssb-ConfigMobilityis included in the measurement object for NR PSCell or NR neighbour cells. |
The IE ReportConfigToAddModList concerns a list of reporting configurations to add or modify.
-- ASN1START -- TAG-REPORTCONFIGTOADDMODLIST-START ReportConfigToAddModList ::= SEQUENCE (SIZE (1..maxReportConfigId)) OF ReportConfigToAddMod ReportConfigToAddMod ::= SEQUENCE { reportConfigId ReportConfigId, reportConfig CHOICE { reportConfigNR ReportConfigNR, ..., reportConfigInterRAT ReportConfigInterRAT } } -- TAG-REPORTCONFIGTOADDMODLIST-STOP -- ASN1STOP
The IE ReportInterval indicates the interval between periodical reports. The ReportInterval is applicable if the UE performs periodical reporting (i.e. when reportAmount exceeds 1), for reportType eventTriggered as well as for reportType periodical. Value ms120 corresponds to 120 ms, value ms240 corresponds to 240 ms and so on, while value min1 corresponds to 1 min, min6 corresponds to 6 min and so on.
The IE ReselectionThreshold is used to indicate an Rx level threshold for cell reselection. Actual value of threshold = field value * 2 [dB].
The IE ReselectionThresholdQ is used to indicate a quality level threshold for cell reselection. Actual value of threshold = field value [dB].
The IE ResumeCause is used to indicate the resume cause in RRCResumeRequest and RRCResumeRequest1.
The IE RLC-BearerConfig is used to configure an RLC entity, a corresponding logical channel in MAC and the linking to a PDCP entity (served radio bearer).
-- ASN1START -- TAG-RLC-BEARERCONFIG-START RLC-BearerConfig ::= SEQUENCE {logicalChannelIdentityID used commonly for the MAC logical channel and for the RLC bearer.LogicalChannelIdentity,servedRadioBearerAssociates the RLC Bearer with an SRB or a DRB. The UE shall deliver DL RLC SDUs received via the RLC entity of this RLC bearer to the PDCP entity of the servedRadioBearer. Furthermore, the UE shall advertise and deliver uplink PDCP PDUs of the uplink PDCP entity of the servedRadioBearer to the uplink RLC entity of this RLC bearer unless the uplink scheduling restrictions (moreThanOneRLC in PDCP-Config and the restrictions in LogicalChannelConfig) forbid it to do so.CHOICE { srb-Identity SRB-Identity, drb-Identity DRB-Identity } OPTIONAL, -- Cond LCH-SetupOnlyreestablishRLCIndicates that RLC should be re-established. Network sets this to trueat least whenever the security key used for the radio bearer associated with this RLC entity changes. For SRB2 and DRBs, unless full configuration is used, it is also set to true during the resumption of the RRC connection or the first reconfiguration after reestablishment. For SRB1, when resuming an RRC connection, or at the first reconfiguration after RRC connection reestablishment, the network does not set this field to true.ENUMERATED {true} OPTIONAL, -- Need Nrlc-ConfigDetermines the RLC mode (UM, AM) and provides corresponding parameters. RLC mode reconfiguration can only be performed by DRB release/addition or full configuration.RLC-Config OPTIONAL, -- Cond LCH-Setup mac-LogicalChannelConfig LogicalChannelConfig OPTIONAL, -- Cond LCH-Setup ... } -- TAG-RLC-BEARERCONFIG-STOP -- ASN1STOP
RLC-BearerConfig field descriptions |
---|
logicalChannelIdentity ID used commonly for the MAC logical channel and for the RLC bearer. |
reestablishRLC Indicates that RLC should be re-established. Network sets this to trueat least whenever the security key used for the radio bearer associated with this RLC entity changes. For SRB2 and DRBs, unless full configuration is used, it is also set to true during the resumption of the RRC connection or the first reconfiguration after reestablishment. For SRB1, when resuming an RRC connection, or at the first reconfiguration after RRC connection reestablishment, the network does not set this field to true. |
rlc-Config Determines the RLC mode (UM, AM) and provides corresponding parameters. RLC mode reconfiguration can only be performed by DRB release/addition or full configuration. |
servedRadioBearer Associates the RLC Bearer with an SRB or a DRB. The UE shall deliver DL RLC SDUs received via the RLC entity of this RLC bearer to the PDCP entity of the servedRadioBearer. Furthermore, the UE shall advertise and deliver uplink PDCP PDUs of the uplink PDCP entity of the servedRadioBearer to the uplink RLC entity of this RLC bearer unless the uplink scheduling restrictions (moreThanOneRLC in PDCP-Config and the restrictions in LogicalChannelConfig) forbid it to do so. |
Conditional Presence | Explanation |
---|---|
LCH-Setup | This field is mandatory present upon creation of a new logical channel for a DRB. This field is optionally present, Need S, upon creation of a new logical channel for an SRB. It is optionally present, Need M, otherwise. |
LCH-SetupOnly | This field is mandatory present upon creation of a new logical channel. It is absent, Need M otherwise. |
The IE RLC-Config is used to specify the RLC configuration of SRBs and DRBs.
-- ASN1START -- TAG-RLC-CONFIG-START RLC-Config ::= CHOICE { am SEQUENCE { ul-AM-RLC UL-AM-RLC, dl-AM-RLC DL-AM-RLC }, um-Bi-Directional SEQUENCE { ul-UM-RLC UL-UM-RLC, dl-UM-RLC DL-UM-RLC }, um-Uni-Directional-UL SEQUENCE { ul-UM-RLC UL-UM-RLC }, um-Uni-Directional-DL SEQUENCE { dl-UM-RLC DL-UM-RLC }, ... } UL-AM-RLC ::= SEQUENCE {sn-FieldLengthIndicates the RLC SN field size, see TS 38.322 [4], in bits. Value size6 means 6 bits, valuesize12 means 12 bits, valuesize18 means 18 bits. The value of sn-FieldLengthof an RLC entity for the DRB shall be changed only using reconfiguration with sync. The network configures only valuesize12 in SN-FieldLengthAM for SRB.SN-FieldLengthAM OPTIONAL, -- Cond Reestabt-PollRetransmitTimer for RLC AM in TS 38.322 [4], in milliseconds. Value ms5 means 5ms, valuems10 means 10ms and so on.T-PollRetransmit,pollPDUParameter for RLC AM in TS 38.322 [4]. Value p4 corresponds to 4 PDUs, valuep8corresponds to 8 PDUs and so on. infinity corresponds to an infinite number of PDUs.PollPDU,pollByteParameter for RLC AM in TS 38.322 [4]. Value kB25 corresponds to 25 kBytes, valuekB50corresponds to 50 kBytes and so on. infinity corresponds to an infinite amount of kBytes.PollByte,maxRetxThresholdParameter for RLC AM in TS 38.322 [4]. Value t1 corresponds to 1 retransmission, valuet2corresponds to 2 retransmissions and so on.ENUMERATED { t1, t2, t3, t4, t6, t8, t16, t32 } } DL-AM-RLC ::= SEQUENCE {sn-FieldLengthIndicates the RLC SN field size, see TS 38.322 [4], in bits. Value size6 means 6 bits, valuesize12 means 12 bits, valuesize18 means 18 bits. The value of sn-FieldLengthof an RLC entity for the DRB shall be changed only using reconfiguration with sync. The network configures only valuesize12 in SN-FieldLengthAM for SRB.SN-FieldLengthAM OPTIONAL, -- Cond Reestabt-ReassemblyTimer for reassembly in TS 38.322 [4], in milliseconds. Value ms0 means 0ms, valuems5 means 5ms and so on.T-Reassembly,t-StatusProhibitTimer for status reporting in TS 38.322 [4], in milliseconds. Value ms0 means 0ms, valuems5 means 5ms and so on.T-StatusProhibit } UL-UM-RLC ::= SEQUENCE {sn-FieldLengthIndicates the RLC SN field size, see TS 38.322 [4], in bits. Value size6 means 6 bits, valuesize12 means 12 bits, valuesize18 means 18 bits. The value of sn-FieldLengthof an RLC entity for the DRB shall be changed only using reconfiguration with sync. The network configures only valuesize12 in SN-FieldLengthAM for SRB.SN-FieldLengthUM OPTIONAL -- Cond Reestab } DL-UM-RLC ::= SEQUENCE {sn-FieldLengthIndicates the RLC SN field size, see TS 38.322 [4], in bits. Value size6 means 6 bits, valuesize12 means 12 bits, valuesize18 means 18 bits. The value of sn-FieldLengthof an RLC entity for the DRB shall be changed only using reconfiguration with sync. The network configures only valuesize12 in SN-FieldLengthAM for SRB.SN-FieldLengthUM OPTIONAL, -- Cond Reestabt-ReassemblyTimer for reassembly in TS 38.322 [4], in milliseconds. Value ms0 means 0ms, valuems5 means 5ms and so on.T-Reassembly } T-PollRetransmit ::= ENUMERATED { ms5, ms10, ms15, ms20, ms25, ms30, ms35, ms40, ms45, ms50, ms55, ms60, ms65, ms70, ms75, ms80, ms85, ms90, ms95, ms100, ms105, ms110, ms115, ms120, ms125, ms130, ms135, ms140, ms145, ms150, ms155, ms160, ms165, ms170, ms175, ms180, ms185, ms190, ms195, ms200, ms205, ms210, ms215, ms220, ms225, ms230, ms235, ms240, ms245, ms250, ms300, ms350, ms400, ms450, ms500, ms800, ms1000, ms2000, ms4000, spare5, spare4, spare3, spare2, spare1} PollPDU ::= ENUMERATED { p4, p8, p16, p32, p64, p128, p256, p512, p1024, p2048, p4096, p6144, p8192, p12288, p16384,p20480, p24576, p28672, p32768, p40960, p49152, p57344, p65536, infinity, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1} PollByte ::= ENUMERATED { kB1, kB2, kB5, kB8, kB10, kB15, kB25, kB50, kB75, kB100, kB125, kB250, kB375, kB500, kB750, kB1000, kB1250, kB1500, kB2000, kB3000, kB4000, kB4500, kB5000, kB5500, kB6000, kB6500, kB7000, kB7500, mB8, mB9, mB10, mB11, mB12, mB13, mB14, mB15, mB16, mB17, mB18, mB20, mB25, mB30, mB40, infinity, spare20, spare19, spare18, spare17, spare16, spare15, spare14, spare13, spare12, spare11, spare10, spare9, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1} T-Reassembly ::= ENUMERATED { ms0, ms5, ms10, ms15, ms20, ms25, ms30, ms35, ms40, ms45, ms50, ms55, ms60, ms65, ms70, ms75, ms80, ms85, ms90, ms95, ms100, ms110, ms120, ms130, ms140, ms150, ms160, ms170, ms180, ms190, ms200, spare1} T-StatusProhibit ::= ENUMERATED { ms0, ms5, ms10, ms15, ms20, ms25, ms30, ms35, ms40, ms45, ms50, ms55, ms60, ms65, ms70, ms75, ms80, ms85, ms90, ms95, ms100, ms105, ms110, ms115, ms120, ms125, ms130, ms135, ms140, ms145, ms150, ms155, ms160, ms165, ms170, ms175, ms180, ms185, ms190, ms195, ms200, ms205, ms210, ms215, ms220, ms225, ms230, ms235, ms240, ms245, ms250, ms300, ms350, ms400, ms450, ms500, ms800, ms1000, ms1200, ms1600, ms2000, ms2400, spare2, spare1} SN-FieldLengthUM ::= ENUMERATED {size6, size12} SN-FieldLengthAM ::= ENUMERATED {size12, size18} -- TAG-RLC-CONFIG-STOP -- ASN1STOP
RLC-Config field descriptions |
---|
maxRetxThreshold Parameter for RLC AM in TS 38.322 [4]. Value t1 corresponds to 1 retransmission, valuet2corresponds to 2 retransmissions and so on. |
pollByte Parameter for RLC AM in TS 38.322 [4]. Value kB25 corresponds to 25 kBytes, valuekB50corresponds to 50 kBytes and so on. infinity corresponds to an infinite amount of kBytes. |
pollPDU Parameter for RLC AM in TS 38.322 [4]. Value p4 corresponds to 4 PDUs, valuep8corresponds to 8 PDUs and so on. infinity corresponds to an infinite number of PDUs. |
sn-FieldLength Indicates the RLC SN field size, see TS 38.322 [4], in bits. Value size6 means 6 bits, valuesize12 means 12 bits, valuesize18 means 18 bits. The value of sn-FieldLengthof an RLC entity for the DRB shall be changed only using reconfiguration with sync. The network configures only valuesize12 in SN-FieldLengthAM for SRB. |
t-PollRetransmit Timer for RLC AM in TS 38.322 [4], in milliseconds. Value ms5 means 5ms, valuems10 means 10ms and so on. |
t-Reassembly Timer for reassembly in TS 38.322 [4], in milliseconds. Value ms0 means 0ms, valuems5 means 5ms and so on. |
t-StatusProhibit Timer for status reporting in TS 38.322 [4], in milliseconds. Value ms0 means 0ms, valuems5 means 5ms and so on. |
Conditional Presence | Explanation |
---|---|
Reestab | The field is mandatory present at RLC bearer setup. It is optionally present, need M, at RLC re-establishment. Otherwise it is absent. Need M. |
The IE RLF-TimersAndConstants is used to configure UE specific timers and constants.
-- ASN1START -- TAG-RLF-TIMERSANDCONSTANTS-START RLF-TimersAndConstants ::= SEQUENCE { t310 ENUMERATED {ms0, ms50, ms100, ms200, ms500, ms1000, ms2000, ms4000, ms6000}, n310 ENUMERATED {n1, n2, n3, n4, n6, n8, n10, n20}, n311 ENUMERATED {n1, n2, n3, n4, n5, n6, n8, n10}, ..., [[ t311 ENUMERATED {ms1000, ms3000, ms5000, ms10000, ms15000, ms20000, ms30000} ]] } -- TAG-RLF-TIMERSANDCONSTANTS-STOP -- ASN1STOP
RLF-TimersAndConstants field descriptions |
---|
n3xy Constants are described in clause 7.3. Value n1 corresponds to 1, valuen2 corresponds to 2 and so on. |
t3xy Timers are described in clause 7.1. Value ms0 corresponds to 0 ms, valuems50 corresponds to 50 ms and so on. |
The IE RNTI-Value represents a Radio Network Temporary Identity.
The IE RSRP-Range specifies the value range used in RSRP measurements and thresholds. For measurements, integer value for RSRP measurements is according to Table 10.1.6.1-1 in TS 38.133 [14]. For thresholds, the actual value is (IE value – 156) dBm, except for the IE value 127, in which case the actual value is infinity.
The IE RSRQ-Range specifies the value range used in RSRQ measurements and thresholds. For measurements, integer value for RSRQ measurements is according to Table 10.1.11.1-1 in TS 38.133 [14]. For thresholds, the actual value is (IE value – 87) / 2 dB.
The IE SCellIndex concerns a short identity, used to identify an SCell. The value range is shared across the Cell Groups.
The IE SchedulingRequestConfig is used to configure the parameters, for the dedicated scheduling request (SR) resources.
-- ASN1START -- TAG-SCHEDULINGREQUESTCONFIG-START SchedulingRequestConfig ::= SEQUENCE {schedulingRequestToAddModListList of Scheduling Request configurations to add or modify.SEQUENCE (SIZE (1..maxNrofSR-ConfigPerCellGroup)) OF SchedulingRequestToAddMod OPTIONAL, -- Need NschedulingRequestToReleaseListList of Scheduling Request configurations to release.SEQUENCE (SIZE (1..maxNrofSR-ConfigPerCellGroup)) OF SchedulingRequestId OPTIONAL -- Need N } SchedulingRequestToAddMod ::= SEQUENCE {schedulingRequestIdUsed to modify a SR configuration and to indicate, in LogicalChannelConfig, the SR configuration to which a logical channel is mapped and to indicate, in SchedulingRequestresourceConfig, the SR configuration for which a scheduling request resource is used.SchedulingRequestId,sr-ProhibitTimerTimer for SR transmission on PUCCH in TS 38.321 [3]. Value is in ms. Value ms1 corresponds to 1ms, valuems2 corresponds to 2ms, and so on. When the field is absent, the UE applies the value 0.ENUMERATED {ms1, ms2, ms4, ms8, ms16, ms32, ms64, ms128} OPTIONAL, -- Need Ssr-TransMaxMaximum number of SR transmissions as described in TS 38.321 [3]. Value n4 corresponds to 4, valuen8 corresponds to 8, and so on.ENUMERATED { n4, n8, n16, n32, n64, spare3, spare2, spare1} } -- TAG-SCHEDULINGREQUESTCONFIG-STOP -- ASN1STOP
SchedulingRequestConfig field descriptions |
---|
schedulingRequestToAddModList List of Scheduling Request configurations to add or modify. |
schedulingRequestToReleaseList List of Scheduling Request configurations to release. |
SchedulingRequestToAddMod field descriptions |
---|
schedulingRequestId Used to modify a SR configuration and to indicate, in LogicalChannelConfig, the SR configuration to which a logical channel is mapped and to indicate, in SchedulingRequestresourceConfig, the SR configuration for which a scheduling request resource is used. |
sr-ProhibitTimer Timer for SR transmission on PUCCH in TS 38.321 [3]. Value is in ms. Value ms1 corresponds to 1ms, valuems2 corresponds to 2ms, and so on. When the field is absent, the UE applies the value 0. |
sr-TransMax Maximum number of SR transmissions as described in TS 38.321 [3]. Value n4 corresponds to 4, valuen8 corresponds to 8, and so on. |
The IE SchedulingRequestId is used to identify a Scheduling Request instance in the MAC layer.
The IE SchedulingRequestResourceConfig determines physical layer resources on PUCCH where the UE may send the dedicated scheduling request (D-SR) (see TS 38.213 [13], clause 9.2.4).
-- ASN1START -- TAG-SCHEDULINGREQUESTRESOURCECONFIG-START SchedulingRequestResourceConfig ::= SEQUENCE { schedulingRequestResourceId SchedulingRequestResourceId,schedulingRequestIDThe ID of the SchedulingRequestConfig that uses this scheduling request resource.SchedulingRequestId,periodicityAndOffsetSR periodicity and offset in number of symbols or slots (see TS 38.213 [13], clause 9.2.4) The following periodicities may be configured depending on the chosen subcarrier spacing: SCS = 15 kHz: 2sym, 7sym, 1sl, 2sl, 4sl, 5sl, 8sl, 10sl, 16sl, 20sl, 40sl, 80sl SCS = 30 kHz: 2sym, 7sym, 1sl, 2sl, 4sl, 8sl, 10sl, 16sl, 20sl, 40sl, 80sl, 160sl SCS = 60 kHz: 2sym, 7sym/6sym, 1sl, 2sl, 4sl, 8sl, 16sl, 20sl, 40sl, 80sl, 160sl, 320sl SCS = 120 kHz: 2sym, 7sym, 1sl, 2sl, 4sl, 8sl, 16sl, 40sl, 80sl, 160sl, 320sl, 640sl sym6or7 corresponds to 6 symbols if extended cyclic prefix and a SCS of 60 kHz are configured, otherwise it corresponds to 7 symbols. For periodicities 2sym, 7sym and sl1 the UE assumes an offset of 0 slots.CHOICE { sym2 NULL, sym6or7 NULL, sl1 NULL, -- Recurs in every slot sl2 INTEGER (0..1), sl4 INTEGER (0..3), sl5 INTEGER (0..4), sl8 INTEGER (0..7), sl10 INTEGER (0..9), sl16 INTEGER (0..15), sl20 INTEGER (0..19), sl40 INTEGER (0..39), sl80 INTEGER (0..79), sl160 INTEGER (0..159), sl320 INTEGER (0..319), sl640 INTEGER (0..639) } OPTIONAL, -- Need MresourceID of the PUCCH resource in which the UE shall send the scheduling request. The actual PUCCH-Resource is configured in PUCCH-Config of the same UL BWP and serving cell as this SchedulingRequestResourceConfig. The network configures a PUCCH-Resource of PUCCH-format0 or PUCCH-format1 (other formats not supported) (see TS 38.213 [13], clause 9.2.4)PUCCH-ResourceId OPTIONAL -- Need M } -- TAG-SCHEDULINGREQUESTRESOURCECONFIG-STOP -- ASN1STOP
SchedulingRequestResourceConfig field descriptions |
---|
periodicityAndOffset SR periodicity and offset in number of symbols or slots (see TS 38.213 [13], clause 9.2.4) The following periodicities may be configured depending on the chosen subcarrier spacing: SCS = 15 kHz: 2sym, 7sym, 1sl, 2sl, 4sl, 5sl, 8sl, 10sl, 16sl, 20sl, 40sl, 80sl SCS = 30 kHz: 2sym, 7sym, 1sl, 2sl, 4sl, 8sl, 10sl, 16sl, 20sl, 40sl, 80sl, 160sl SCS = 60 kHz: 2sym, 7sym/6sym, 1sl, 2sl, 4sl, 8sl, 16sl, 20sl, 40sl, 80sl, 160sl, 320sl SCS = 120 kHz: 2sym, 7sym, 1sl, 2sl, 4sl, 8sl, 16sl, 40sl, 80sl, 160sl, 320sl, 640sl sym6or7 corresponds to 6 symbols if extended cyclic prefix and a SCS of 60 kHz are configured, otherwise it corresponds to 7 symbols. For periodicities 2sym, 7sym and sl1 the UE assumes an offset of 0 slots. |
resource ID of the PUCCH resource in which the UE shall send the scheduling request. The actual PUCCH-Resource is configured in PUCCH-Config of the same UL BWP and serving cell as this SchedulingRequestResourceConfig. The network configures a PUCCH-Resource of PUCCH-format0 or PUCCH-format1 (other formats not supported) (see TS 38.213 [13], clause 9.2.4) |
schedulingRequestID The ID of the SchedulingRequestConfig that uses this scheduling request resource. |
The IE SchedulingRequestResourceId is used to identify scheduling request resources on PUCCH.
The IE ScramblingID is used for scrambling channels and reference signals.
The IE SCS-SpecificCarrier provides parameters determining the location and width of the actual carrier or the carrier bandwidth. It is defined specifically for a numerology (subcarrier spacing (SCS)) and in relation (frequency offset) to Point A.
-- ASN1START -- TAG-SCS-SPECIFICCARRIER-START SCS-SpecificCarrier ::= SEQUENCE { offsetToCarrier INTEGER (0..2199), subcarrierSpacing SubcarrierSpacing, carrierBandwidth INTEGER (1..maxNrofPhysicalResourceBlocks), ..., [[ txDirectCurrentLocation INTEGER (0..4095) OPTIONAL -- Need S ]] } -- TAG-SCS-SPECIFICCARRIER-STOP -- ASN1STOP
The IE SDAP-Config is used to set the configurable SDAP parameters for a data radio bearer. All configured instances of SDAP-Config with the same value of pdu-Session correspond to the same SDAP entity as specified in TS 37.324 [24].
-- ASN1START -- TAG-SDAP-CONFIG-START SDAP-Config ::= SEQUENCE {pdu-SessionIdentity of the PDU session whose QoS flows are mapped to the DRB.PDU-SessionID,sdap-HeaderDLIndicates whether or not a SDAP header is present for DL data on this DRB. The field cannot be changed after a DRB is established.ENUMERATED {present, absent},sdap-HeaderULIndicates whether or not a SDAP header is present for UL data on this DRB. The field cannot be changed after a DRB is established.The network sets this field to present if the field defaultDRB is set to true.ENUMERATED {present, absent},defaultDRBIndicates whether or not this is the default DRB for this PDU session. Among all configured instances of SDAP-Config with the same value of pdu-Session, this field shall be set to true in at most one instance of SDAP-Config and to falsein all other instances.BOOLEAN,mappedQoS-FlowsToAddIndicates the list of QFIs of UL QoS flows of the PDU session to be additionally mapped to this DRB. A QFI value can be included at most once in all configured instances of SDAP-Config with the same value of pdu-Session. For QoS flow remapping, the QFI value of the remapped QoS flow is only included in mappedQoS-FlowsToAdd in sdap-Config corresponding to the new DRB and not included in mappedQoS-FlowsToRelease in sdap-Config corresponding to the old DRB.SEQUENCE (SIZE (1..maxNrofQFIs)) OF QFI OPTIONAL, -- Need NmappedQoS-FlowsToReleaseIndicates the list of QFIs of QoS flows of the PDU session to be released from existing QoS flow to DRB mapping of this DRB.SEQUENCE (SIZE (1..maxNrofQFIs)) OF QFI OPTIONAL, -- Need N ... } QFI ::= INTEGER (0..maxQFI) PDU-SessionID ::= INTEGER (0..255) -- TAG-SDAP-CONFIG-STOP -- ASN1STOP
SCS-SpecificCarrier field descriptions |
---|
carrierBandwidth Width of this carrier in number of PRBs (using the subcarrierSpacing defined for this carrier) (see TS 38.211 [16], clause 4.4.2). |
offsetToCarrier Offset in frequency domain between Point A (lowest subcarrier of common RB 0) and the lowest usable subcarrier on this carrier in number of PRBs (using the subcarrierSpacing defined for this carrier). The maximum value corresponds to 275*8-1. See TS 38.211 [16], clause 4.4.2. |
txDirectCurrentLocation Indicates the downlink Tx Direct Current location for the carrier. A value in the range 0..3299 indicates the subcarrier index within the carrier. The values in the value range 3301..4095 are reserved and ignored by the UE. If this field is absent for downlink within ServingCellConfigCommon and ServingCellConfigCommonSIB, the UE assumes the default value of 3300 (i.e. "Outside the carrier"). (see TS 38.211 [16], clause 4.4.2). Network does not configure this field via ServingCellConfig or for uplink carriers. |
subcarrierSpacing Subcarrier spacing of this carrier. It is used to convert the offsetToCarrier into an actual frequency. Only the values 15 kHz, 30 kHz or 60 kHz (FR1), and 60 kHz or 120 kHz (FR2) are applicable. |
SDAP-Config field descriptions |
---|
defaultDRB Indicates whether or not this is the default DRB for this PDU session. Among all configured instances of SDAP-Config with the same value of pdu-Session, this field shall be set to true in at most one instance of SDAP-Config and to falsein all other instances. |
mappedQoS-FlowsToAdd Indicates the list of QFIs of UL QoS flows of the PDU session to be additionally mapped to this DRB. A QFI value can be included at most once in all configured instances of SDAP-Config with the same value of pdu-Session. For QoS flow remapping, the QFI value of the remapped QoS flow is only included in mappedQoS-FlowsToAdd in sdap-Config corresponding to the new DRB and not included in mappedQoS-FlowsToRelease in sdap-Config corresponding to the old DRB. |
mappedQoS-FlowsToRelease Indicates the list of QFIs of QoS flows of the PDU session to be released from existing QoS flow to DRB mapping of this DRB. |
pdu-Session Identity of the PDU session whose QoS flows are mapped to the DRB. |
sdap-HeaderUL Indicates whether or not a SDAP header is present for UL data on this DRB. The field cannot be changed after a DRB is established.The network sets this field to present if the field defaultDRB is set to true. |
sdap-HeaderDL Indicates whether or not a SDAP header is present for DL data on this DRB. The field cannot be changed after a DRB is established. |
The IE SearchSpace defines how/where to search for PDCCH candidates. Each search space is associated with one ControlResourceSet. For a scheduled cell in the case of cross carrier scheduling, except for nrofCandidates, all the optional fields are absent (regardless of their presence conditions).
-- ASN1START -- TAG-SEARCHSPACE-START SearchSpace ::= SEQUENCE {searchSpaceIdIdentity of the search space. SearchSpaceId = 0 identifies the searchSpaceZero configured via PBCH (MIB) or ServingCellConfigCommon and may hence not be used in the SearchSpace IE. The searchSpaceId is unique among the BWPs of a Serving Cell. In case of cross carrier scheduling, search spaces with the same searchSpaceId in scheduled cell and scheduling cell are linked to each other. The UE applies the search space for the scheduled cell only if the DL BWPs in which the linked search spaces are configured in scheduling cell and scheduled cell are both active.SearchSpaceId,controlResourceSetIdThe CORESET applicable for this SearchSpace. Value 0 identifies the common CORESET#0 configured in MIB and in ServingCellConfigCommon. Values 1..maxNrofControlResourceSets-1 identify CORESETs configured in System Information or by dedicated signalling. The CORESETs with non-zero controlResourceSetIdare configured in the same BWP as this SearchSpace.ControlResourceSetId OPTIONAL, -- Cond SetupOnlymonitoringSlotPeriodicityAndOffsetSlots for PDCCH Monitoring configured as periodicity and offset. If the UE is configured to monitor DCI format 2_1, only the values 'sl1', 'sl2' or 'sl4' are applicable. If the UE is configured to monitor DCI format 2_0, only the values ′sl1′, ′sl2′, ′sl4′, ′sl5′, ′sl8′, ′sl10′, ′sl16′, and ′sl20′ are applicable (see TS 38.213 [13], clause 10).CHOICE { sl1 NULL, sl2 INTEGER (0..1), sl4 INTEGER (0..3), sl5 INTEGER (0..4), sl8 INTEGER (0..7), sl10 INTEGER (0..9), sl16 INTEGER (0..15), sl20 INTEGER (0..19), sl40 INTEGER (0..39), sl80 INTEGER (0..79), sl160 INTEGER (0..159), sl320 INTEGER (0..319), sl640 INTEGER (0..639), sl1280 INTEGER (0..1279), sl2560 INTEGER (0..2559) } OPTIONAL, -- Cond SetupdurationNumber of consecutive slots that a SearchSpace lasts in every occasion, i.e., upon every period as given in the periodicityAndOffset. If the field is absent, the UE applies the value 1 slot, except for DCI format 2_0. The UE ignores this field for DCI format 2_0. The maximum valid duration is periodicity-1 (periodicity as given in the monitoringSlotPeriodicityAndOffset).INTEGER (2..2559) OPTIONAL, -- Need SmonitoringSymbolsWithinSlotThe first symbol(s) for PDCCH monitoring in the slots configured for PDCCH monitoring (see monitoringSlotPeriodicityAndOffset and duration). The most significant (left) bit represents the first OFDM in a slot, and the second most significant (left) bit represents the second OFDM symbol in a slot and so on. The bit(s) set to one identify the first OFDM symbol(s) of the control resource set within a slot. If the cyclic prefix of the BWP is set to extended CP, the last two bits within the bit string shall be ignored by the UE . For DCI format 2_0, the first one symbol applies if the duration of CORESET (in the IE ControlResourceSet) identified by controlResourceSetId indicates 3 symbols, the first two symbols apply if the duration of CORESET identified by controlResourceSetId indicates 2 symbols, and the first three symbols apply if the duration of CORESET identified by controlResourceSetId indicates 1 symbol. See TS 38.213 [13], clause 10.BIT STRING (SIZE (14)) OPTIONAL, -- Cond SetupnrofCandidatesNumber of PDCCH candidates per aggregation level. The number of candidates and aggregation levels configured here applies to all formats unless a particular value is specified or a format-specific value is provided (see inside searchSpaceType). If configured in the SearchSpace of a cross carrier scheduled cell, this field determines the number of candidates and aggregation levels to be used on the linked scheduling cell (see TS 38.213 [13], clause 10).SEQUENCE { aggregationLevel1 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}, aggregationLevel2 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}, aggregationLevel4 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}, aggregationLevel8 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}, aggregationLevel16 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8} } OPTIONAL, -- Cond SetupsearchSpaceTypeIndicates whether this is a common search space (present) or a UE specific search space as well as DCI formats to monitor for.CHOICE {commonConfigures this search space as common search space (CSS) and DCI formats to monitor.SEQUENCE {dci-Format0-0-AndFormat1-0If configured, the UE monitors the DCI formats 0_0 and 1_0 according to TS 38.213 [13], clause 10.1.SEQUENCE { ... } OPTIONAL, -- Need Rdci-Format2-0If configured, UE monitors the DCI format 2_0 according to TS 38.213 [13], clause 10.1, 11.1.1.SEQUENCE {nrofCandidates-SFIThe number of PDCCH candidates specifically for format 2-0 for the configured aggregation level. If an aggregation level is absent, the UE does not search for any candidates with that aggregation level. The network configures only one aggregationLevel and the corresponding number of candidates (see TS 38.213 [13], clause 11.1.1).SEQUENCE { aggregationLevel1 ENUMERATED {n1, n2} OPTIONAL, -- Need R aggregationLevel2 ENUMERATED {n1, n2} OPTIONAL, -- Need R aggregationLevel4 ENUMERATED {n1, n2} OPTIONAL, -- Need R aggregationLevel8 ENUMERATED {n1, n2} OPTIONAL, -- Need R aggregationLevel16 ENUMERATED {n1, n2} OPTIONAL -- Need R }, ... } OPTIONAL, -- Need Rdci-Format2-1If configured, UE monitors the DCI format 2_1 according to TS 38.213 [13], clause 10.1, 11.2.SEQUENCE { ... } OPTIONAL, -- Need Rdci-Format2-2If configured, UE monitors the DCI format 2_2 according to TS 38.213 [13], clause 10.1, 11.3.SEQUENCE { ... } OPTIONAL, -- Need Rdci-Format2-3If configured, UE monitors the DCI format 2_3 according to TS 38.213 [13], clause 10.1, 11.4SEQUENCE { dummy1 ENUMERATED {sl1, sl2, sl4, sl5, sl8, sl10, sl16, sl20} OPTIONAL, -- Cond Setup dummy2 ENUMERATED {n1, n2}, ... } OPTIONAL -- Need R },ue-SpecificConfigures this search space as UE specific search space (USS). The UE monitors the DCI format with CRC scrambled by C-RNTI, CS-RNTI (if configured), and SP-CSI-RNTI (if configured)SEQUENCE {dci-FormatsIndicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1.ENUMERATED {formats0-0-And-1-0, formats0-1-And-1-1}, ... } } OPTIONAL -- Cond Setup } -- TAG-SEARCHSPACE-STOP -- ASN1STOP
SearchSpace field descriptions |
---|
common Configures this search space as common search space (CSS) and DCI formats to monitor. |
controlResourceSetId The CORESET applicable for this SearchSpace. Value 0 identifies the common CORESET#0 configured in MIB and in ServingCellConfigCommon. Values 1..maxNrofControlResourceSets-1 identify CORESETs configured in System Information or by dedicated signalling. The CORESETs with non-zero controlResourceSetIdare configured in the same BWP as this SearchSpace. |
dummy1, dummy2 This field is not used in the specification. If received it shall be ignored by the UE. |
dci-Format0-0-AndFormat1-0 If configured, the UE monitors the DCI formats 0_0 and 1_0 according to TS 38.213 [13], clause 10.1. |
dci-Format2-0 If configured, UE monitors the DCI format 2_0 according to TS 38.213 [13], clause 10.1, 11.1.1. |
dci-Format2-1 If configured, UE monitors the DCI format 2_1 according to TS 38.213 [13], clause 10.1, 11.2. |
dci-Format2-2 If configured, UE monitors the DCI format 2_2 according to TS 38.213 [13], clause 10.1, 11.3. |
dci-Format2-3 If configured, UE monitors the DCI format 2_3 according to TS 38.213 [13], clause 10.1, 11.4 |
dci-Formats Indicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1. |
duration Number of consecutive slots that a SearchSpace lasts in every occasion, i.e., upon every period as given in the periodicityAndOffset. If the field is absent, the UE applies the value 1 slot, except for DCI format 2_0. The UE ignores this field for DCI format 2_0. The maximum valid duration is periodicity-1 (periodicity as given in the monitoringSlotPeriodicityAndOffset). |
monitoringSlotPeriodicityAndOffset Slots for PDCCH Monitoring configured as periodicity and offset. If the UE is configured to monitor DCI format 2_1, only the values 'sl1', 'sl2' or 'sl4' are applicable. If the UE is configured to monitor DCI format 2_0, only the values ′sl1′, ′sl2′, ′sl4′, ′sl5′, ′sl8′, ′sl10′, ′sl16′, and ′sl20′ are applicable (see TS 38.213 [13], clause 10). |
monitoringSymbolsWithinSlot The first symbol(s) for PDCCH monitoring in the slots configured for PDCCH monitoring (see monitoringSlotPeriodicityAndOffset and duration). The most significant (left) bit represents the first OFDM in a slot, and the second most significant (left) bit represents the second OFDM symbol in a slot and so on. The bit(s) set to one identify the first OFDM symbol(s) of the control resource set within a slot. If the cyclic prefix of the BWP is set to extended CP, the last two bits within the bit string shall be ignored by the UE . For DCI format 2_0, the first one symbol applies if the duration of CORESET (in the IE ControlResourceSet) identified by controlResourceSetId indicates 3 symbols, the first two symbols apply if the duration of CORESET identified by controlResourceSetId indicates 2 symbols, and the first three symbols apply if the duration of CORESET identified by controlResourceSetId indicates 1 symbol. See TS 38.213 [13], clause 10. |
nrofCandidates-SFI The number of PDCCH candidates specifically for format 2-0 for the configured aggregation level. If an aggregation level is absent, the UE does not search for any candidates with that aggregation level. The network configures only one aggregationLevel and the corresponding number of candidates (see TS 38.213 [13], clause 11.1.1). |
nrofCandidates Number of PDCCH candidates per aggregation level. The number of candidates and aggregation levels configured here applies to all formats unless a particular value is specified or a format-specific value is provided (see inside searchSpaceType). If configured in the SearchSpace of a cross carrier scheduled cell, this field determines the number of candidates and aggregation levels to be used on the linked scheduling cell (see TS 38.213 [13], clause 10). |
searchSpaceId Identity of the search space. SearchSpaceId = 0 identifies the searchSpaceZero configured via PBCH (MIB) or ServingCellConfigCommon and may hence not be used in the SearchSpace IE. The searchSpaceId is unique among the BWPs of a Serving Cell. In case of cross carrier scheduling, search spaces with the same searchSpaceId in scheduled cell and scheduling cell are linked to each other. The UE applies the search space for the scheduled cell only if the DL BWPs in which the linked search spaces are configured in scheduling cell and scheduled cell are both active. |
searchSpaceType Indicates whether this is a common search space (present) or a UE specific search space as well as DCI formats to monitor for. |
ue-Specific Configures this search space as UE specific search space (USS). The UE monitors the DCI format with CRC scrambled by C-RNTI, CS-RNTI (if configured), and SP-CSI-RNTI (if configured) |
Conditional Presence | Explanation |
---|---|
Setup | This field is mandatory present upon creation of a new SearchSpace. It is optionally present, Need M, otherwise. |
SetupOnly | This field is mandatory present upon creation of a new SearchSpace. It is absent, Need M, otherwise. |
The IE SearchSpaceId is used to identify Search Spaces. The ID space is used across the BWPs of a Serving Cell. The search space with the SearchSpaceId = 0 identifies the search space configured via PBCH (MIB) and in ServingCellConfigCommon (searchSpaceZero). The number of Search Spaces per BWP is limited to 10 including the common and UE specific Search Spaces.
The IE SearchSpaceZero is used to configure SearchSpace#0 of the initial BWP (see TS 38.213 [13], clause 13).
The IE SecurityAlgorithmConfig is used to configure AS integrity protection algorithm and AS ciphering algorithm for SRBs and DRBs.
-- ASN1START -- TAG-SECURITYALGORITHMCONFIG-START SecurityAlgorithmConfig ::= SEQUENCE {cipheringAlgorithmIndicates the ciphering algorithm to be used for SRBs and DRBs, as specified in TS 33.501 [11]. The algorithms nea0-nea3 are identical to the LTE algorithms eea0-3. The algorithms configured for all bearers using master keyshall be the same,and the algorithms configured for all bearers using secondary key, if any, shall be the same.If UE is connected to E-UTRA/EPC, this field indicates the ciphering algorithm to be used for RBs configured with NR PDCP, as specified in TS 33.501 [11].CipheringAlgorithm,integrityProtAlgorithmIndicates the integrity protection algorithm to be used for SRBs and DRBs, as specified in TS 33.501 [11]. The algorithms nia0-nia3 are identical to the E-UTRA algorithms eia0-3. The algorithms configured for all bearers using master key shall be the same and the algorithms configured for all bearers using secondary key, if any, shall be the same.The network does not configure nia0 except for unauthenticated emergency sessions for unauthenticated UEs in LSM (limited service mode). If UE is connected to E-UTRA/EPC, this field indicates the integrity protection algorithm to be used for SRBs configured with NR PDCP, as specified in TS 33.501 [11]. The network does not configure nia0 for SRB3.IntegrityProtAlgorithm OPTIONAL, -- Need R ... } IntegrityProtAlgorithm ::= ENUMERATED { nia0, nia1, nia2, nia3, spare4, spare3, spare2, spare1, ...} CipheringAlgorithm ::= ENUMERATED { nea0, nea1, nea2, nea3, spare4, spare3, spare2, spare1, ...} -- TAG-SECURITYALGORITHMCONFIG-STOP -- ASN1STOP
SecurityAlgorithmConfig field descriptions |
---|
cipheringAlgorithm Indicates the ciphering algorithm to be used for SRBs and DRBs, as specified in TS 33.501 [11]. The algorithms nea0-nea3 are identical to the LTE algorithms eea0-3. The algorithms configured for all bearers using master keyshall be the same,and the algorithms configured for all bearers using secondary key, if any, shall be the same.If UE is connected to E-UTRA/EPC, this field indicates the ciphering algorithm to be used for RBs configured with NR PDCP, as specified in TS 33.501 [11]. |
integrityProtAlgorithm Indicates the integrity protection algorithm to be used for SRBs and DRBs, as specified in TS 33.501 [11]. The algorithms nia0-nia3 are identical to the E-UTRA algorithms eia0-3. The algorithms configured for all bearers using master key shall be the same and the algorithms configured for all bearers using secondary key, if any, shall be the same.The network does not configure nia0 except for unauthenticated emergency sessions for unauthenticated UEs in LSM (limited service mode). If UE is connected to E-UTRA/EPC, this field indicates the integrity protection algorithm to be used for SRBs configured with NR PDCP, as specified in TS 33.501 [11]. The network does not configure nia0 for SRB3. |
The IE ServCellIndex concerns a short identity, used to uniquely identify a serving cell (i.e. the PCell, the PSCell or an SCell) across the cell groups. Value 0 applies for the PCell, while the SCellIndex that has previously been assigned applies for SCells.
The IE ServingCellConfig is used to configure (add or modify) the UE with a serving cell, which may be the SpCell or an SCell of an MCG or SCG. The parameters herein are mostly UE specific but partly also cell specific (e.g. in additionally configured bandwidth parts). Reconfiguration between a PUCCH and PUCCHless SCell is only supported using an SCell release and add.
-- ASN1START -- TAG-SERVINGCELLCONFIG-START ServingCellConfig ::= SEQUENCE { tdd-UL-DL-ConfigurationDedicated TDD-UL-DL-ConfigDedicated OPTIONAL, -- Cond TDDinitialDownlinkBWPThe dedicated (UE-specific) configuration for the initial downlink bandwidth-part (i.e. DL BWP#0). If any of the optional IEs are configured within this IE, the UE considers the BWP#0 to be an RRC configured BWP (from UE capability viewpoint). Otherwise, the UE does not consider the BWP#0 as an RRC configured BWP (from UE capability viewpoint). Network always configures the UE with a value forthis field if no other BWPs are configured. NOTE1BWP-DownlinkDedicated OPTIONAL, -- Need MdownlinkBWP-ToReleaseListList of additional downlink bandwidth parts to be released. (see TS 38.213 [13], clause 12).SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need NdownlinkBWP-ToAddModListList of additional downlink bandwidth parts to be added or modified. (see TS 38.213 [13], clause 12).SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Downlink OPTIONAL, -- Need NfirstActiveDownlinkBWP-IdIf configured for an SpCell, this field contains the ID of the DL BWP to be activated upon performing the RRC (re-)configuration. If the field is absent, the RRC (re-)configuration does not impose a BWP switch. If configured for an SCell, this field contains the ID of the downlink bandwidth part to be used upon MAC-activation of an SCell. The initial bandwidth part is referred to by BWP-Id = 0. Upon reconfiguration with reconfigurationWithSync, the network sets the firstActiveDownlinkBWP-Id and firstActiveUplinkBWP-Id to the same value.BWP-Id OPTIONAL, -- Cond SyncAndCellAddbwp-InactivityTimerThe duration in ms after which the UE falls back to the default Bandwidth Part (see TS 38.321 [3], clause 5.15). When the network releases the timer configuration, the UE stops the timer without switching to the default BWP.ENUMERATED {ms2, ms3, ms4, ms5, ms6, ms8, ms10, ms20, ms30, ms40,ms50, ms60, ms80,ms100, ms200,ms300, ms500, ms750, ms1280, ms1920, ms2560, spare10, spare9, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1 } OPTIONAL, --Need RdefaultDownlinkBWP-IdThe initial bandwidth part is referred to by BWP-Id = 0. ID of the downlink bandwidth part to be used upon expiry of the BWP inactivity timer. This field is UE specific. When the field is absent the UE uses the initial BWP as default BWP. (see TS 38.213 [13], clause 12 and TS 38.321 [3], clause 5.15).BWP-Id OPTIONAL, -- Need SuplinkConfigNetwork may configure this field only when uplinkConfigCommon is configured in ServingCellConfigCommon or ServingCellConfigCommonSIB. Addition or release of this field can only be done upon SCell addition or release (respectively).UplinkConfig OPTIONAL, -- Need MsupplementaryUplinkNetwork may configure this field only when supplementaryUplinkConfig is configured in ServingCellConfigCommon or supplementaryUplink is configured inServingCellConfigCommonSIB.UplinkConfig OPTIONAL, -- Need M pdcch-ServingCellConfig SetupRelease { PDCCH-ServingCellConfig } OPTIONAL, -- Need Mpdsch-ServingCellConfigPDSCH related parameters that are not BWP-specific.SetupRelease { PDSCH-ServingCellConfig } OPTIONAL, -- Need M csi-MeasConfig SetupRelease { CSI-MeasConfig } OPTIONAL, -- Need MsCellDeactivationTimerSCell deactivation timer in TS 38.321 [3]. If the field is absent, the UE applies the value infinity.ENUMERATED {ms20, ms40, ms80, ms160, ms200, ms240, ms320, ms400, ms480, ms520, ms640, ms720, ms840, ms1280, spare2,spare1} OPTIONAL, -- Cond ServingCellWithoutPUCCHcrossCarrierSchedulingConfigIndicates whether this serving cell is cross-carrier scheduled by another serving cell or whether it cross-carrier schedules another serving cell.CrossCarrierSchedulingConfig OPTIONAL, -- Need Mtag-IdTiming Advance Group ID, as specified in TS 38.321 [3], which this cell belongs to.TAG-Id, dummy ENUMERATED {enabled} OPTIONAL, -- Need RpathlossReferenceLinkingIndicates whether UE shall apply as pathloss reference either the downlink of SpCell (PCell for MCG or PSCell for SCG) or of SCell that corresponds with this uplink (see TS 38.213 [13], clause 7).ENUMERATED {spCell, sCell} OPTIONAL, -- Cond SCellOnlyservingCellMOmeasObjectId of the MeasObjectNR in MeasConfigwhich is associated to the serving cell. For this MeasObjectNR, the following relationship applies between this MeasObjectNR and frequencyInfoDL in ServingCellConfigCommon of the serving cell: if ssbFrequency is configured, its value is the same as the absoluteFrequencySSB and if csi-rs-ResourceConfigMobility is configured, the value of its subcarrierSpacing is present in one entry of the scs-SpecificCarrierList, csi-RS-CellListMobility includes an entry corresponding to the serving cell (with cellId equal to physCellId in ServingCellConfigCommon) and the frequency range indicated by the csi-rs-MeasurementBW of the entry in csi-RS-CellListMobility is included in the frequency range indicated by in the entry of the scs-SpecificCarrierList.MeasObjectId OPTIONAL, -- Cond MeasObject ..., [[lte-CRS-ToMatchAroundParameters to determine an LTE CRS pattern that the UE shall rate match around.SetupRelease { RateMatchPatternLTE-CRS } OPTIONAL, -- Need MrateMatchPatternToAddModListResources patterns which the UE should rate match PDSCH around. The UE rate matches around the union of all resources indicated in the rate match patterns. Rate match patterns defined here on cell level apply only to PDSCH of the same numerology. See TS 38.214 [19], clause 5.1.4.1.SEQUENCE (SIZE (1..maxNrofRateMatchPatterns)) OF RateMatchPattern OPTIONAL, -- Need N rateMatchPatternToReleaseList SEQUENCE (SIZE (1..maxNrofRateMatchPatterns)) OF RateMatchPatternId OPTIONAL, -- Need NdownlinkChannelBW-PerSCS-ListA set of UE specific channel bandwidth and locationconfigurations for different subcarrier spacings (numerologies). Defined in relation to Point A. The UE uses the configuration provided in this field only for the purpose of channel bandwidth and location determination. If absent, UE uses the configuration indicated in scs-SpecificCarrierList in DownlinkConfigCommon / DownlinkConfigCommonSIB. Network only configures channel bandwidth that corresponds to the channel bandwidth values defined in TS 38.101-1 [15] and TS 38.101-2 [39].SEQUENCE (SIZE (1..maxSCSs)) OF SCS-SpecificCarrier OPTIONAL -- Need S ]] } UplinkConfig ::= SEQUENCE {initialUplinkBWPThe dedicated (UE-specific) configuration for the initial uplink bandwidth-part (i.e. UL BWP#0). If any of the optional IEs are configured within this IE as part of the IE uplinkConfig, the UE considers the BWP#0 to be an RRC configured BWP (from UE capability viewpoint). Otherwise, the UE does not consider the BWP#0 as an RRC configured BWP (from UE capability viewpoint). Network always configures the UE with a value forthis field if no other BWPs are configured. NOTE1BWP-UplinkDedicated OPTIONAL, -- Need MuplinkBWP-ToReleaseListThe additional bandwidth parts for uplink to be released.SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Id OPTIONAL, -- Need NuplinkBWP-ToAddModListThe additional bandwidth parts for uplink to be added or modified. In case of TDD uplink- and downlink BWP with the same bandwidthPartId are considered as a BWP pair and must have the same center frequency.SEQUENCE (SIZE (1..maxNrofBWPs)) OF BWP-Uplink OPTIONAL, -- Need NfirstActiveUplinkBWP-IdIf configured for an SpCell, this field contains the ID of the UL BWP to be activated upon performing the RRC (re-)configuration. If the field is absent, the RRC (re-)configuration does not impose a BWP switch. If configured for an SCell, this field contains the ID of the uplink bandwidth part to be used upon MAC-activation of an SCell. The initial bandwidth part is referred to by BandiwdthPartId = 0.BWP-Id OPTIONAL, -- Cond SyncAndCellAddpusch-ServingCellConfigPUSCH related parameters that are not BWP-specific.SetupRelease { PUSCH-ServingCellConfig } OPTIONAL, -- Need McarrierSwitchingIncludes parameters for configuration of carrier based SRS switching (see TS 38.214 [19], clause 6.2.1.3.SetupRelease { SRS-CarrierSwitching } OPTIONAL, -- Need M ..., [[powerBoostPi2BPSKIf this field is set to true, the UE determines the maximum output power for PUCCH/PUSCH transmissions that use pi/2 BPSK modulation according to TS 38.101-1 [15], clause 6.2.4.BOOLEAN OPTIONAL, -- Need MuplinkChannelBW-PerSCS-ListA set of UE specific channel bandwidth and locationconfigurations for different subcarrier spacings (numerologies). Defined in relation to Point A. The UE uses the configuration provided in this field only for the purpose of channel bandwidth and location determination. If absent, UE uses the configuration indicated in scs-SpecificCarrierList in UplinkConfigCommon / UplinkConfigCommonSIB. Network only configures channel bandwidth that corresponds to the channel bandwidth values defined in TS 38.101-1 [15] and TS 38.101-2 [39].SEQUENCE (SIZE (1..maxSCSs)) OF SCS-SpecificCarrier OPTIONAL -- Need S ]] } -- TAG-SERVINGCELLCONFIG-STOP -- ASN1STOP
ServingCellConfig field descriptions |
---|
bwp-InactivityTimer The duration in ms after which the UE falls back to the default Bandwidth Part (see TS 38.321 [3], clause 5.15). When the network releases the timer configuration, the UE stops the timer without switching to the default BWP. |
crossCarrierSchedulingConfig Indicates whether this serving cell is cross-carrier scheduled by another serving cell or whether it cross-carrier schedules another serving cell. |
defaultDownlinkBWP-Id The initial bandwidth part is referred to by BWP-Id = 0. ID of the downlink bandwidth part to be used upon expiry of the BWP inactivity timer. This field is UE specific. When the field is absent the UE uses the initial BWP as default BWP. (see TS 38.213 [13], clause 12 and TS 38.321 [3], clause 5.15). |
downlinkBWP-ToAddModList List of additional downlink bandwidth parts to be added or modified. (see TS 38.213 [13], clause 12). |
downlinkBWP-ToReleaseList List of additional downlink bandwidth parts to be released. (see TS 38.213 [13], clause 12). |
downlinkChannelBW-PerSCS-List A set of UE specific channel bandwidth and locationconfigurations for different subcarrier spacings (numerologies). Defined in relation to Point A. The UE uses the configuration provided in this field only for the purpose of channel bandwidth and location determination. If absent, UE uses the configuration indicated in scs-SpecificCarrierList in DownlinkConfigCommon / DownlinkConfigCommonSIB. Network only configures channel bandwidth that corresponds to the channel bandwidth values defined in TS 38.101-1 [15] and TS 38.101-2 [39]. |
firstActiveDownlinkBWP-Id If configured for an SpCell, this field contains the ID of the DL BWP to be activated upon performing the RRC (re-)configuration. If the field is absent, the RRC (re-)configuration does not impose a BWP switch. If configured for an SCell, this field contains the ID of the downlink bandwidth part to be used upon MAC-activation of an SCell. The initial bandwidth part is referred to by BWP-Id = 0. Upon reconfiguration with reconfigurationWithSync, the network sets the firstActiveDownlinkBWP-Id and firstActiveUplinkBWP-Id to the same value. |
initialDownlinkBWP The dedicated (UE-specific) configuration for the initial downlink bandwidth-part (i.e. DL BWP#0). If any of the optional IEs are configured within this IE, the UE considers the BWP#0 to be an RRC configured BWP (from UE capability viewpoint). Otherwise, the UE does not consider the BWP#0 as an RRC configured BWP (from UE capability viewpoint). Network always configures the UE with a value forthis field if no other BWPs are configured. NOTE1 |
lte-CRS-ToMatchAround Parameters to determine an LTE CRS pattern that the UE shall rate match around. |
pathlossReferenceLinking Indicates whether UE shall apply as pathloss reference either the downlink of SpCell (PCell for MCG or PSCell for SCG) or of SCell that corresponds with this uplink (see TS 38.213 [13], clause 7). |
pdsch-ServingCellConfig PDSCH related parameters that are not BWP-specific. |
rateMatchPatternToAddModList Resources patterns which the UE should rate match PDSCH around. The UE rate matches around the union of all resources indicated in the rate match patterns. Rate match patterns defined here on cell level apply only to PDSCH of the same numerology. See TS 38.214 [19], clause 5.1.4.1. |
sCellDeactivationTimer SCell deactivation timer in TS 38.321 [3]. If the field is absent, the UE applies the value infinity. |
servingCellMO measObjectId of the MeasObjectNR in MeasConfigwhich is associated to the serving cell. For this MeasObjectNR, the following relationship applies between this MeasObjectNR and frequencyInfoDL in ServingCellConfigCommon of the serving cell: if ssbFrequency is configured, its value is the same as the absoluteFrequencySSB and if csi-rs-ResourceConfigMobility is configured, the value of its subcarrierSpacing is present in one entry of the scs-SpecificCarrierList, csi-RS-CellListMobility includes an entry corresponding to the serving cell (with cellId equal to physCellId in ServingCellConfigCommon) and the frequency range indicated by the csi-rs-MeasurementBW of the entry in csi-RS-CellListMobility is included in the frequency range indicated by in the entry of the scs-SpecificCarrierList. |
supplementaryUplink Network may configure this field only when supplementaryUplinkConfig is configured in ServingCellConfigCommon or supplementaryUplink is configured inServingCellConfigCommonSIB. |
tag-Id Timing Advance Group ID, as specified in TS 38.321 [3], which this cell belongs to. |
uplinkConfig Network may configure this field only when uplinkConfigCommon is configured in ServingCellConfigCommon or ServingCellConfigCommonSIB. Addition or release of this field can only be done upon SCell addition or release (respectively). |
UplinkConfig field descriptions |
---|
carrierSwitching Includes parameters for configuration of carrier based SRS switching (see TS 38.214 [19], clause 6.2.1.3. |
firstActiveUplinkBWP-Id If configured for an SpCell, this field contains the ID of the UL BWP to be activated upon performing the RRC (re-)configuration. If the field is absent, the RRC (re-)configuration does not impose a BWP switch. If configured for an SCell, this field contains the ID of the uplink bandwidth part to be used upon MAC-activation of an SCell. The initial bandwidth part is referred to by BandiwdthPartId = 0. |
initialUplinkBWP The dedicated (UE-specific) configuration for the initial uplink bandwidth-part (i.e. UL BWP#0). If any of the optional IEs are configured within this IE as part of the IE uplinkConfig, the UE considers the BWP#0 to be an RRC configured BWP (from UE capability viewpoint). Otherwise, the UE does not consider the BWP#0 as an RRC configured BWP (from UE capability viewpoint). Network always configures the UE with a value forthis field if no other BWPs are configured. NOTE1 |
powerBoostPi2BPSK If this field is set to true, the UE determines the maximum output power for PUCCH/PUSCH transmissions that use pi/2 BPSK modulation according to TS 38.101-1 [15], clause 6.2.4. |
pusch-ServingCellConfig PUSCH related parameters that are not BWP-specific. |
uplinkBWP-ToAddModList The additional bandwidth parts for uplink to be added or modified. In case of TDD uplink- and downlink BWP with the same bandwidthPartId are considered as a BWP pair and must have the same center frequency. |
uplinkBWP-ToReleaseList The additional bandwidth parts for uplink to be released. |
uplinkChannelBW-PerSCS-List A set of UE specific channel bandwidth and locationconfigurations for different subcarrier spacings (numerologies). Defined in relation to Point A. The UE uses the configuration provided in this field only for the purpose of channel bandwidth and location determination. If absent, UE uses the configuration indicated in scs-SpecificCarrierList in UplinkConfigCommon / UplinkConfigCommonSIB. Network only configures channel bandwidth that corresponds to the channel bandwidth values defined in TS 38.101-1 [15] and TS 38.101-2 [39]. |
Conditional Presence | Explanation |
---|---|
MeasObject | This field is mandatory present for the SpCell if the UE has a measConfig, and it is optionally present, Need M, for SCells. |
SCellOnly | This field is optionally present, Need R, for SCells. It is absent otherwise. |
ServingCellWithoutPUCCH | This field is optionally present, Need S, for SCells except PUCCH SCells. It is absent otherwise. |
SyncAndCellAdd | This field is mandatory present for a SpCell upon reconfiguration with reconfigurationWithSync and upon RRCSetup/RRCResume. The field is optionally present for a SpCell, Need N, upon reconfiguration without reconfigurationWithSync. The field is mandatory present for an SCell upon addition, and absent for SCell in other cases, Need M. |
TDD | This field is optionally present, Need R, for TDD cells. It is absent otherwise. |
The IE ServingCellConfigCommon is used to configure cell specific parameters of a UE's serving cell. The IE contains parameters which a UE would typically acquire from SSB,MIB or SIBs when accessing the cell from IDLE. With this IE,the network provides this information in dedicated signalling when configuring a UE with a SCells or with an additional cell group (SCG). It also provides it for SpCells (MCG and SCG) upon reconfiguration with sync.
-- ASN1START -- TAG-SERVINGCELLCONFIGCOMMON-START ServingCellConfigCommon ::= SEQUENCE { physCellId PhysCellId OPTIONAL, -- Cond HOAndServCellAdd,downlinkConfigCommonThe common downlink configuration of the serving cell, including the frequency information configuration and the initial downlink BWP common configuration. The parameters provided herein should match the parameters configured by MIB and SIB1 (if provided) of the serving cell, with the exception of controlResourceSetZero and searchSpaceZero which can be configured in ServingCellConfigCommon even if MIB indicates that they are absent.DownlinkConfigCommon OPTIONAL, -- Cond HOAndServCellAdd uplinkConfigCommon UplinkConfigCommon OPTIONAL, -- Need MsupplementaryUplinkConfigThe network configures this field only if uplinkConfigCommon is configured. If this field is absent, the UE shall release the supplementaryUplinkConfig and the supplementaryUplink configured in ServingCellConfig of this serving cell, if configured.UplinkConfigCommon OPTIONAL, -- Need Sn-TimingAdvanceOffsetThe N_TA-Offset to be applied for all uplink transmissions on this serving cell. If the field is absent, the UE applies the value defined for the duplex mode and frequency range of this serving cell. See TS 38.133 [14], table 7.1.2-2.ENUMERATED { n0, n25600, n39936 } OPTIONAL, -- Need Sssb-PositionsInBurstIndicates the time domain positions of the transmitted SS-blocks ina half frame with SS/PBCH blocks as defined in TS 38.213 [13], clause 4.1. The first/ leftmost bit corresponds to SS/PBCH block index 0, the second bit corresponds to SS/PBCH block index 1, and so on. Value 0 in the bitmap indicates that the corresponding SS/PBCH block is not transmitted while value 1 indicates that the corresponding SS/PBCH block is transmitted. The network configures the same pattern in this field as in the corresponding field in ServingCellConfigCommonSIB.CHOICE {shortBitmapBitmap when maximum number of SS/PBCH blocks per half frame equals to 4 as defined in TS 38.213 [13], clause 4.1.BIT STRING (SIZE (4)),mediumBitmapBitmap when maximum number of SS/PBCH blocks per half frame equals to 8 as defined in TS 38.213 [13], clause 4.1.BIT STRING (SIZE (8)),longBitmapBitmap when maximum number of SS/PBCH blocks per half frame equals to 64 as defined in TS 38.213 [13], clause 4.1.BIT STRING (SIZE (64)) } OPTIONAL, -- Cond AbsFreqSSBssb-periodicityServingCellThe SSB periodicity in ms for the rate matching purpose. If the field is absent, the UE applies the value ms5. (see TS 38.213 [13], clause 4.1)ENUMERATED { ms5, ms10, ms20, ms40, ms80, ms160, spare2, spare1 } OPTIONAL, -- Need Sdmrs-TypeA-PositionPosition of (first) DM-RS for downlink (see TS 38.211 [16], clause 7.4.1.1.1) and uplink (TS 38.211 [16], clause 6.4.1.1.3).ENUMERATED {pos2, pos3},lte-CRS-ToMatchAroundParameters to determine an LTE CRS pattern that the UE shall rate match around.SetupRelease { RateMatchPatternLTE-CRS } OPTIONAL, -- Need MrateMatchPatternToAddModListResources patterns which the UE should rate match PDSCH around. The UE rate matches around the union of all resources indicated in the rate match patterns. Rate match patterns defined here on cell level apply only to PDSCH of the same numerology (see TS 38.214 [19], clause 5.1.4,1).SEQUENCE (SIZE (1..maxNrofRateMatchPatterns)) OF RateMatchPattern OPTIONAL, -- Need N rateMatchPatternToReleaseList SEQUENCE (SIZE (1..maxNrofRateMatchPatterns)) OF RateMatchPatternId OPTIONAL, -- Need NssbSubcarrierSpacingSubcarrier spacing of SSB. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable.SubcarrierSpacing OPTIONAL, -- Cond HOAndServCellWithSSBtdd-UL-DL-ConfigurationCommonA cell-specific TDD UL/DL configuration, see TS 38.213 [13], clause 11.1.TDD-UL-DL-ConfigCommon OPTIONAL, -- Cond TDDss-PBCH-BlockPowerAverage EPRE of the resources elements that carry secondary synchronization signals in dBm that the NW used for SSB transmission, see TS 38.213 [13], clause 7.INTEGER (-60..50), ... } -- TAG-SERVINGCELLCONFIGCOMMON-STOP -- ASN1STOP
ServingCellConfigCommon field descriptions |
---|
dmrs-TypeA-Position Position of (first) DM-RS for downlink (see TS 38.211 [16], clause 7.4.1.1.1) and uplink (TS 38.211 [16], clause 6.4.1.1.3). |
downlinkConfigCommon The common downlink configuration of the serving cell, including the frequency information configuration and the initial downlink BWP common configuration. The parameters provided herein should match the parameters configured by MIB and SIB1 (if provided) of the serving cell, with the exception of controlResourceSetZero and searchSpaceZero which can be configured in ServingCellConfigCommon even if MIB indicates that they are absent. |
longBitmap Bitmap when maximum number of SS/PBCH blocks per half frame equals to 64 as defined in TS 38.213 [13], clause 4.1. |
lte-CRS-ToMatchAround Parameters to determine an LTE CRS pattern that the UE shall rate match around. |
mediumBitmap Bitmap when maximum number of SS/PBCH blocks per half frame equals to 8 as defined in TS 38.213 [13], clause 4.1. |
n-TimingAdvanceOffset The N_TA-Offset to be applied for all uplink transmissions on this serving cell. If the field is absent, the UE applies the value defined for the duplex mode and frequency range of this serving cell. See TS 38.133 [14], table 7.1.2-2. |
rateMatchPatternToAddModList Resources patterns which the UE should rate match PDSCH around. The UE rate matches around the union of all resources indicated in the rate match patterns. Rate match patterns defined here on cell level apply only to PDSCH of the same numerology (see TS 38.214 [19], clause 5.1.4,1). |
shortBitmap Bitmap when maximum number of SS/PBCH blocks per half frame equals to 4 as defined in TS 38.213 [13], clause 4.1. |
ss-PBCH-BlockPower Average EPRE of the resources elements that carry secondary synchronization signals in dBm that the NW used for SSB transmission, see TS 38.213 [13], clause 7. |
ssb-periodicityServingCell The SSB periodicity in ms for the rate matching purpose. If the field is absent, the UE applies the value ms5. (see TS 38.213 [13], clause 4.1) |
ssb-PositionsInBurst Indicates the time domain positions of the transmitted SS-blocks ina half frame with SS/PBCH blocks as defined in TS 38.213 [13], clause 4.1. The first/ leftmost bit corresponds to SS/PBCH block index 0, the second bit corresponds to SS/PBCH block index 1, and so on. Value 0 in the bitmap indicates that the corresponding SS/PBCH block is not transmitted while value 1 indicates that the corresponding SS/PBCH block is transmitted. The network configures the same pattern in this field as in the corresponding field in ServingCellConfigCommonSIB. |
ssbSubcarrierSpacing Subcarrier spacing of SSB. Only the values 15 kHz or 30 kHz (FR1), and 120 kHz or 240 kHz (FR2) are applicable. |
supplementaryUplinkConfig The network configures this field only if uplinkConfigCommon is configured. If this field is absent, the UE shall release the supplementaryUplinkConfig and the supplementaryUplink configured in ServingCellConfig of this serving cell, if configured. |
tdd-UL-DL-ConfigurationCommon A cell-specific TDD UL/DL configuration, see TS 38.213 [13], clause 11.1. |
Conditional Presence | Explanation |
---|---|
AbsFreqSSB | The field is absent when absoluteFrequencySSB in frequencyInfoDL is absent, otherwise the field is mandatory present. |
HOAndServCellAdd | This field is mandatory present upon SpCell change and upon serving cell (PSCell/SCell) addition. Otherwise, the field is absent. |
HOAndServCellWithSSB | This field is mandatory present upon SpCell change and upon serving cell (SCell with SSB or PSCell) addition. Otherwise, the field is absent. |
TDD | The field is optionally present, Need R, for TDD cells; otherwise it is absent. |
The IE ServingCellConfigCommonSIB is used to configure cell specific parameters of a UE's serving cell in SIB1.
-- ASN1START -- TAG-SERVINGCELLCONFIGCOMMONSIB-START ServingCellConfigCommonSIB ::= SEQUENCE { downlinkConfigCommon DownlinkConfigCommonSIB, uplinkConfigCommon UplinkConfigCommonSIB OPTIONAL, -- Need R supplementaryUplink UplinkConfigCommonSIB OPTIONAL, -- Need Rn-TimingAdvanceOffsetThe N_TA-Offset to be applied for random access on this serving cell. If the field is absent, the UE applies the value defined for the duplex mode and frequency range of this serving cell. See TS 38.133 [14], table 7.1.2-2.ENUMERATED { n0, n25600, n39936 } OPTIONAL, -- Need Sssb-PositionsInBurstTime domain positions of the transmitted SS-blocks in an SS-burst as defined in TS 38.213 [13], clause 4.1.SEQUENCE {inOneGroupWhen maximum number of SS/PBCH blocks per half frame equals to 4 as defined in TS 38.213 [13], clause 4.1, only the 4 leftmost bits are valid; the UE ignores the 4 rightmost bits. When maximum number of SS/PBCH blocks per half frame equals to 8 as defined in TS 38.213 [13], clause 4.1, all 8 bits are valid. The first/ leftmost bit corresponds to SS/PBCH block index 0, the second bit corresponds to SS/PBCH block index 1, and so on. When maximum number of SS/PBCH blocks per half frame equals to 64 as defined in TS 38.213 [13], clause 4.1, all 8 bit are valid; The first/ leftmost bit corresponds to the first SS/PBCH block index in the group (i.e., to SSB index 0, 8, and so on); the second bit corresponds to the second SS/PBCH block index in the group (i.e., to SSB index 1, 9, and so on), and so on. Value 0 in the bitmap indicates that the corresponding SS/PBCH block is not transmitted while value 1 indicates that the corresponding SS/PBCH block is transmitted.BIT STRING (SIZE (8)),groupPresenceThis field is present when maximum number of SS/PBCH blocks per half frame equals to 64 as defined in TS 38.213 [13], clause 4.1. The first/leftmost bit corresponds to the SS/PBCH index 0-7, the second bit corresponds to SS/PBCH block 8-15, and so on. Value 0 in the bitmap indicates that the SSBs according to inOneGroup are absent. Value 1 indicates that the SS/PBCH blocks are transmitted in accordance with inOneGroup.BIT STRING (SIZE (8)) OPTIONAL -- Cond FR2-Only }, ssb-PeriodicityServingCell ENUMERATED {ms5, ms10, ms20, ms40, ms80, ms160}, tdd-UL-DL-ConfigurationCommon TDD-UL-DL-ConfigCommon OPTIONAL, -- Cond TDDss-PBCH-BlockPowerAverage EPRE of the resources elements that carry secondary synchronization signals in dBm that the NW used for SSB transmission, see TS 38.213 [13], clause 7.INTEGER (-60..50), ... } -- TAG-SERVINGCELLCONFIGCOMMONSIB-STOP -- ASN1STOP
ServingCellConfigCommonSIB field descriptions |
---|
groupPresence This field is present when maximum number of SS/PBCH blocks per half frame equals to 64 as defined in TS 38.213 [13], clause 4.1. The first/leftmost bit corresponds to the SS/PBCH index 0-7, the second bit corresponds to SS/PBCH block 8-15, and so on. Value 0 in the bitmap indicates that the SSBs according to inOneGroup are absent. Value 1 indicates that the SS/PBCH blocks are transmitted in accordance with inOneGroup. |
inOneGroup When maximum number of SS/PBCH blocks per half frame equals to 4 as defined in TS 38.213 [13], clause 4.1, only the 4 leftmost bits are valid; the UE ignores the 4 rightmost bits. When maximum number of SS/PBCH blocks per half frame equals to 8 as defined in TS 38.213 [13], clause 4.1, all 8 bits are valid. The first/ leftmost bit corresponds to SS/PBCH block index 0, the second bit corresponds to SS/PBCH block index 1, and so on. When maximum number of SS/PBCH blocks per half frame equals to 64 as defined in TS 38.213 [13], clause 4.1, all 8 bit are valid; The first/ leftmost bit corresponds to the first SS/PBCH block index in the group (i.e., to SSB index 0, 8, and so on); the second bit corresponds to the second SS/PBCH block index in the group (i.e., to SSB index 1, 9, and so on), and so on. Value 0 in the bitmap indicates that the corresponding SS/PBCH block is not transmitted while value 1 indicates that the corresponding SS/PBCH block is transmitted. |
n-TimingAdvanceOffset The N_TA-Offset to be applied for random access on this serving cell. If the field is absent, the UE applies the value defined for the duplex mode and frequency range of this serving cell. See TS 38.133 [14], table 7.1.2-2. |
ssb-PositionsInBurst Time domain positions of the transmitted SS-blocks in an SS-burst as defined in TS 38.213 [13], clause 4.1. |
ss-PBCH-BlockPower Average EPRE of the resources elements that carry secondary synchronization signals in dBm that the NW used for SSB transmission, see TS 38.213 [13], clause 7. |
Conditional Presence | Explanation |
---|---|
FR2-Only | This field is mandatory present for an FR2 carrier frequency. It is absent otherwise and UE releases any configured value. |
TDD | The field is optionally present, Need R, for TDD cells; otherwise it is absent. |
The IE ShortI-RNTI-Value is used to identify the suspended UE context of a UE in RRC_INACTIVE using fewer bits compared to I-RNTI-Value.
The IE ShortMAC-I is used to identify and verify the UE at RRC connection re-establishment. The 16 least significant bits of the MAC-I calculated using the AS security configuration of the source PCell, as specified in 5.3.7.4.
The IE SINR-Range specifies the value range used in SINR measurements and thresholds. For measurements, integer value for SINR measurements is according to Table 10.1.16.1-1 in TS 38.133 [14]. For thresholds, the actual value is (IE value – 46) / 2 dB.
The IE SI-SchedulingInfo contains information needed for acquisition of SI messages.
-- ASN1START -- TAG–SI-SCHEDULINGINFO-START SI-SchedulingInfo ::= SEQUENCE { schedulingInfoList SEQUENCE (SIZE (1..maxSI-Message)) OF SchedulingInfo,si-WindowLengthThe length of the SI scheduling window. Values5 corresponds to 5 slots, values10corresponds to 10 slots and so on. The network always configures si-WindowLength to be shorter than or equal to the si-Periodicity.ENUMERATED {s5, s10, s20, s40, s80, s160, s320, s640, s1280},si-RequestConfigConfiguration of Msg1 resources that the UE uses for requesting SI-messages for which si-BroadcastStatus is set to notBroadcasting.SI-RequestConfig OPTIONAL, -- Cond MSG-1si-RequestConfigSULConfiguration of Msg1 resources that the UE uses for requesting SI-messages for which si-BroadcastStatus is set to notBroadcasting.SI-RequestConfig OPTIONAL, -- Cond SUL-MSG-1systemInformationAreaIDIndicates the system information area that the cell belongs to, if any. Any SIB with areaScope within the SI is considered to belong to this systemInformationAreaID. The systemInformationAreaID is unique within a PLMN.BIT STRING (SIZE (24)) OPTIONAL, -- Need R ... } SchedulingInfo ::= SEQUENCE {si-BroadcastStatusIndicates if the SI message is being broadcasted or not. Change of si-BroadcastStatus should not result in system information change notifications in Short Message transmitted with P-RNTI over DCI (see clause 6.5). The value of the indication is valid until the end of the BCCH modification period when set to broadcasting.ENUMERATED {broadcasting, notBroadcasting},si-PeriodicityPeriodicity of the SI-message in radio frames. Value rf8 corresponds to 8 radio frames, value rf16 corresponds to 16 radio frames, and so on.ENUMERATED {rf8, rf16, rf32, rf64, rf128, rf256, rf512}, sib-MappingInfo SIB-Mapping } SIB-Mapping ::= SEQUENCE (SIZE (1..maxSIB)) OF SIB-TypeInfo SIB-TypeInfo ::= SEQUENCE { type ENUMERATED {sibType2, sibType3, sibType4, sibType5, sibType6, sibType7, sibType8, sibType9, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1,... }, valueTag INTEGER (0..31) OPTIONAL, -- Cond SIB-TYPEareaScopeIndicates that a SIB is area specific. If the field is absent, the SIB is cell specific.ENUMERATED {true} OPTIONAL -- Need S } -- Configuration for Msg1 based SI Request SI-RequestConfig ::= SEQUENCE {rach-OccasionsSIConfiguration of dedicated RACH Occassions for SI. If the field is absent, the UE uses the corresponding parameters configured in rach-ConfigCommon of the initial uplink BWP.SEQUENCE { rach-ConfigSI RACH-ConfigGeneric, ssb-perRACH-Occasion ENUMERATED {oneEighth, oneFourth, oneHalf, one, two, four, eight, sixteen} } OPTIONAL, -- Need Rsi-RequestPeriodPeriodicity of the SI-Request configuration in number of association periods.ENUMERATED {one, two, four, six, eight, ten, twelve, sixteen} OPTIONAL, -- Need Rsi-RequestResourcesIf there is only one entry in the list, the configuration is used for all SI messages for which si-BroadcastStatus is set to notBroadcasting. Otherwise the 1st entry in the list corresponds to the first SI message in schedulingInfoList for which si-BroadcastStatus is set to notBroadcasting, 2nd entry in the list corresponds to the second SI message in schedulingInfoList for which si-BroadcastStatus is set to notBroadcasting and so on. Change of si-RequestResources should not result in system information change notification.SEQUENCE (SIZE (1..maxSI-Message)) OF SI-RequestResources } SI-RequestResources ::= SEQUENCE {ra-PreambleStartIndexIf N SSBs are associated with a RACH occasion, where N > = 1, for the i-th SSB (i=0, …, N-1) the preamble with preamble index = ra-PreambleStartIndex + i is used for SI request; For N < 1, the preamble with preamble index = ra-PreambleStartIndex is used for SI request.INTEGER (0..63),ra-AssociationPeriodIndexIndex of the association period in the si-RequestPeriod in which the UE can send the SI request for SI message(s) corresponding to this SI-RequestResources, using the preambles indicated by ra-PreambleStartIndex and rach occasions indicated by ra-ssb-OccasionMaskIndex.INTEGER (0..15) OPTIONAL, -- Need R ra-ssb-OccasionMaskIndex INTEGER (0..15) OPTIONAL -- Need R } -- TAG-SI-SCHEDULINGINFO-STOP -- ASN1STOP
SchedulingInfo field descriptions |
---|
areaScope Indicates that a SIB is area specific. If the field is absent, the SIB is cell specific. |
si-BroadcastStatus Indicates if the SI message is being broadcasted or not. Change of si-BroadcastStatus should not result in system information change notifications in Short Message transmitted with P-RNTI over DCI (see clause 6.5). The value of the indication is valid until the end of the BCCH modification period when set to broadcasting. |
si-Periodicity Periodicity of the SI-message in radio frames. Value rf8 corresponds to 8 radio frames, value rf16 corresponds to 16 radio frames, and so on. |
SI-RequestConfig field descriptions |
---|
rach-OccasionsSI Configuration of dedicated RACH Occassions for SI. If the field is absent, the UE uses the corresponding parameters configured in rach-ConfigCommon of the initial uplink BWP. |
si-RequestPeriod Periodicity of the SI-Request configuration in number of association periods. |
si-RequestResources If there is only one entry in the list, the configuration is used for all SI messages for which si-BroadcastStatus is set to notBroadcasting. Otherwise the 1st entry in the list corresponds to the first SI message in schedulingInfoList for which si-BroadcastStatus is set to notBroadcasting, 2nd entry in the list corresponds to the second SI message in schedulingInfoList for which si-BroadcastStatus is set to notBroadcasting and so on. Change of si-RequestResources should not result in system information change notification. |
SI-RequestResources field descriptions |
---|
ra-AssociationPeriodIndex Index of the association period in the si-RequestPeriod in which the UE can send the SI request for SI message(s) corresponding to this SI-RequestResources, using the preambles indicated by ra-PreambleStartIndex and rach occasions indicated by ra-ssb-OccasionMaskIndex. |
ra-PreambleStartIndex If N SSBs are associated with a RACH occasion, where N > = 1, for the i-th SSB (i=0, …, N-1) the preamble with preamble index = ra-PreambleStartIndex + i is used for SI request; For N < 1, the preamble with preamble index = ra-PreambleStartIndex is used for SI request. |
SI-SchedulingInfo field descriptions |
---|
si-RequestConfig Configuration of Msg1 resources that the UE uses for requesting SI-messages for which si-BroadcastStatus is set to notBroadcasting. |
si-RequestConfigSUL Configuration of Msg1 resources that the UE uses for requesting SI-messages for which si-BroadcastStatus is set to notBroadcasting. |
si-WindowLength The length of the SI scheduling window. Values5 corresponds to 5 slots, values10corresponds to 10 slots and so on. The network always configures si-WindowLength to be shorter than or equal to the si-Periodicity. |
systemInformationAreaID Indicates the system information area that the cell belongs to, if any. Any SIB with areaScope within the SI is considered to belong to this systemInformationAreaID. The systemInformationAreaID is unique within a PLMN. |
Conditional presence | Explanation |
---|---|
MSG-1 | The field is optionally present, Need R, if si-BroadcastStatus is set to notBroadcastingfor any SI-message included in schedulingInfoList. It is absent otherwise. |
SIB-TYPE | The field is mandatory present if the SIB type is different from SIB6, SIB7 or SIB8. For SIB6, SIB7 and SIB8 it is absent. |
SUL-MSG-1 | The field is optionally present, Need R, if supplementaryUplink is configured in ServingCellConfigCommonSIB and if si-BroadcastStatus is set to notBroadcasting for any SI-message included in schedulingInfoList. It is absent otherwise. |
The IE SK-Counter is a counter used upon initial configuration of SN security for NR-DC and NE-DC, as well as upon refresh of S-KgNB or S-KeNB based on the current or newly derived KgNB during RRC Resume or RRC Reconfiguration, as defined in TS 33.501 [11].
The IE SlotFormatCombinationsPerCell is used to configure the SlotFormatCombinations applicable for one serving cell (see TS 38.213 [13], clause 11.1.1).
-- ASN1START -- TAG-SLOTFORMATCOMBINATIONSPERCELL-START SlotFormatCombinationsPerCell ::= SEQUENCE {servingCellIdThe ID of the serving cell for which the slotFormatCombinations are applicable.ServCellIndex,subcarrierSpacingReference subcarrier spacing for this Slot Format Combination. The network configures a value that is smaller than or equal to any SCS of configured BWPs of the serving cell that the command applies to. And the network configures a value that is smaller than or equal to the SCS of the serving cell which the UE monitors for SFI indications (see TS 38.213 [13], clause 11.1.1).SubcarrierSpacing,subcarrierSpacing2Reference subcarrier spacing for a Slot Format Combination on an FDD or SUL cell (see TS 38.213 [13], clause 11.1.1). For FDD, subcarrierSpacing (SFI-scs) is the reference SCS for DL BWP and subcarrierSpacing2 (SFI-scs2) is the reference SCS for UL BWP. For SUL, subcarrierSpacing (SFI-scs) is the reference SCS for non-SUL carrier and subcarrierSpacing2 (SFI-scs2) is the reference SCS for SUL carrier. The network configures a value that is smaller than or equal to any SCS of configured BWPs of the serving cell that the command applies to. And the network configures a value that is smaller than or equal to the SCS of the serving cell which the UE monitors for SFI indications.SubcarrierSpacing OPTIONAL, -- Need RslotFormatCombinationsA list with SlotFormatCombinations. Each SlotFormatCombination comprises of one or more SlotFormats (see TS 38.211 [16], clause 4.3.2). The total number of slotFormats in the slotFormatCombinations list does not exceed 512.SEQUENCE (SIZE (1..maxNrofSlotFormatCombinationsPerSet)) OF SlotFormatCombination OPTIONAL, -- Need MpositionInDCIThe (starting) position (bit) of the slotFormatCombinationId (SFI-Index) for this serving cell (servingCellId) within the DCI payload (see TS 38.213 [13], clause 11.1.1).INTEGER(0..maxSFI-DCI-PayloadSize-1) OPTIONAL, -- Need M ... } SlotFormatCombination ::= SEQUENCE {slotFormatCombinationIdThis ID is used in the DCI payload to dynamically select this SlotFormatCombination, see TS 38.213 [13], clause 11.1.1.SlotFormatCombinationId,slotFormatsSlot formats that occur in consecutive slots in time domain order as listed here (see TS 38.213 [13], clause11.1.1).SEQUENCE (SIZE (1..maxNrofSlotFormatsPerCombination)) OF INTEGER (0..255) } SlotFormatCombinationId ::= INTEGER (0..maxNrofSlotFormatCombinationsPerSet-1) -- TAG-SLOTFORMATCOMBINATIONSPERCELL-STOP -- ASN1STOP
SlotFormatCombination field descriptions |
---|
slotFormatCombinationId This ID is used in the DCI payload to dynamically select this SlotFormatCombination, see TS 38.213 [13], clause 11.1.1. |
slotFormats Slot formats that occur in consecutive slots in time domain order as listed here (see TS 38.213 [13], clause11.1.1). |
SlotFormatCombinationsPerCell field descriptions |
---|
positionInDCI The (starting) position (bit) of the slotFormatCombinationId (SFI-Index) for this serving cell (servingCellId) within the DCI payload (see TS 38.213 [13], clause 11.1.1). |
servingCellId The ID of the serving cell for which the slotFormatCombinations are applicable. |
slotFormatCombinations A list with SlotFormatCombinations. Each SlotFormatCombination comprises of one or more SlotFormats (see TS 38.211 [16], clause 4.3.2). The total number of slotFormats in the slotFormatCombinations list does not exceed 512. |
subcarrierSpacing2 Reference subcarrier spacing for a Slot Format Combination on an FDD or SUL cell (see TS 38.213 [13], clause 11.1.1). For FDD, subcarrierSpacing (SFI-scs) is the reference SCS for DL BWP and subcarrierSpacing2 (SFI-scs2) is the reference SCS for UL BWP. For SUL, subcarrierSpacing (SFI-scs) is the reference SCS for non-SUL carrier and subcarrierSpacing2 (SFI-scs2) is the reference SCS for SUL carrier. The network configures a value that is smaller than or equal to any SCS of configured BWPs of the serving cell that the command applies to. And the network configures a value that is smaller than or equal to the SCS of the serving cell which the UE monitors for SFI indications. |
subcarrierSpacing Reference subcarrier spacing for this Slot Format Combination. The network configures a value that is smaller than or equal to any SCS of configured BWPs of the serving cell that the command applies to. And the network configures a value that is smaller than or equal to the SCS of the serving cell which the UE monitors for SFI indications (see TS 38.213 [13], clause 11.1.1). |
The IE SlotFormatIndicator is used to configure monitoring a Group-Common-PDCCH for Slot-Format-Indicators (SFI).
-- ASN1START -- TAG-SLOTFORMATINDICATOR-START SlotFormatIndicator ::= SEQUENCE {sfi-RNTIRNTI used for SFI on the given cell (see TS 38.213 [13], clause 11.1.1).RNTI-Value,dci-PayloadSizeTotal length of the DCI payload scrambled with SFI-RNTI (see TS 38.213 [13], clause 11.1.1).INTEGER (1..maxSFI-DCI-PayloadSize),slotFormatCombToAddModListA list of SlotFormatCombinations for the UE's serving cells (see TS 38.213 [13], clause 11.1.1).SEQUENCE (SIZE(1..maxNrofAggregatedCellsPerCellGroup)) OF SlotFormatCombinationsPerCell OPTIONAL, -- Need N slotFormatCombToReleaseList SEQUENCE (SIZE(1..maxNrofAggregatedCellsPerCellGroup)) OF ServCellIndex OPTIONAL, -- Need N ... } -- TAG-SLOTFORMATINDICATOR-STOP -- ASN1STOP
SlotFormatIndicator field descriptions |
---|
dci-PayloadSize Total length of the DCI payload scrambled with SFI-RNTI (see TS 38.213 [13], clause 11.1.1). |
sfi-RNTI RNTI used for SFI on the given cell (see TS 38.213 [13], clause 11.1.1). |
slotFormatCombToAddModList A list of SlotFormatCombinations for the UE's serving cells (see TS 38.213 [13], clause 11.1.1). |
The IE S-NSSAI (Single Network Slice Selection Assistance Information) identifies a Network Slice end to end and comprises a slice/service type and a slice differentiator, see TS 23.003 [21].
The IE SpeedStateScaleFactors concerns factors, to be applied when the UE is in medium or high speed state, used for scaling a mobility control related parameter.
-- ASN1START -- TAG-SPEEDSTATESCALEFACTORS-START SpeedStateScaleFactors ::= SEQUENCE {sf-MediumThe concerned mobility control related parameter is multiplied with this factor if the UE is in Medium Mobility state as defined in TS 38.304 [20]. Value oDot25 corresponds to 0.25, valueoDot5 corresponds to 0.5, valueoDot75 corresponds to 0.75, and so on.ENUMERATED {oDot25, oDot5, oDot75, lDot0},sf-HighThe concerned mobility control related parameter is multiplied with this factor if the UE is in High Mobility state as defined in TS 38.304 [20]. Value oDot25 corresponds to 0.25, valueoDot5 corresponds to 0.5, oDot75 corresponds to 0.75 and so on.ENUMERATED {oDot25, oDot5, oDot75, lDot0} } -- TAG-SPEEDSTATESCALEFACTORS-STOP -- ASN1STOP
S-NSSAI field descriptions |
---|
sst Indicates the S-NSSAI consisting of Slice/Service Type, see TS 23.003 [21]. |
sst-SD Indicates the S-NSSAI consisting of Slice/Service Type and Slice Differentiator, see TS 23.003 [21]. |
SpeedStateScaleFactors field descriptions |
---|
sf-High The concerned mobility control related parameter is multiplied with this factor if the UE is in High Mobility state as defined in TS 38.304 [20]. Value oDot25 corresponds to 0.25, valueoDot5 corresponds to 0.5, oDot75 corresponds to 0.75 and so on. |
sf-Medium The concerned mobility control related parameter is multiplied with this factor if the UE is in Medium Mobility state as defined in TS 38.304 [20]. Value oDot25 corresponds to 0.25, valueoDot5 corresponds to 0.5, valueoDot75 corresponds to 0.75, and so on. |
The IE SPS-Config is used to configure downlink semi-persistent transmission. Downlink SPS may be configured on the SpCell as well as on SCells. The network ensures SPS-Config is configured for at most one cell in a cell group.
-- ASN1START -- TAG-SPS-CONFIG-START SPS-Config ::= SEQUENCE {periodicityPeriodicity for DL SPS (see TS 38.214 [19] and TS 38.321 [3], clause 5.8.1).ENUMERATED {ms10, ms20, ms32, ms40, ms64, ms80, ms128, ms160, ms320, ms640, spare6, spare5, spare4, spare3, spare2, spare1},nrofHARQ-ProcessesNumber of configured HARQ processes for SPS DL (see TS 38.321 [3], clause 5.8.1).INTEGER (1..8),n1PUCCH-ANHARQ resource for PUCCH for DL SPS. The network configures the resource either as format0 or format1. The actual PUCCH-Resource is configured in PUCCH-Config and referred to by its ID. See TS 38.213 [13], clause 9.2.3.PUCCH-ResourceId OPTIONAL, -- Need Mmcs-TableIndicates the MCS table the UE shall use for DL SPS(see TS 38.214 [19],clause 5.1.3.1. If present, the UE shall use the MCS table of low-SE 64QAM table indicated in Table 5.1.3.1-3 of TS 38.214 [19]. If this field is absent and field mcs-table in PDSCH-Config is set to 'qam256' and the activating DCI is of format 1_1, the UE applies the 256QAM table indicated in Table 5.1.3.1-2 of TS 38.214 [19]. Otherwise, the UE applies the non-low-SE 64QAM table indicated in Table 5.1.3.1-1 of TS 38.214 [19].ENUMERATED {qam64LowSE} OPTIONAL, -- Need S ... } -- TAG-SPS-CONFIG-STOP -- ASN1STOP
SPS-Config field descriptions |
---|
mcs-Table Indicates the MCS table the UE shall use for DL SPS(see TS 38.214 [19],clause 5.1.3.1. If present, the UE shall use the MCS table of low-SE 64QAM table indicated in Table 5.1.3.1-3 of TS 38.214 [19]. If this field is absent and field mcs-table in PDSCH-Config is set to 'qam256' and the activating DCI is of format 1_1, the UE applies the 256QAM table indicated in Table 5.1.3.1-2 of TS 38.214 [19]. Otherwise, the UE applies the non-low-SE 64QAM table indicated in Table 5.1.3.1-1 of TS 38.214 [19]. |
n1PUCCH-AN HARQ resource for PUCCH for DL SPS. The network configures the resource either as format0 or format1. The actual PUCCH-Resource is configured in PUCCH-Config and referred to by its ID. See TS 38.213 [13], clause 9.2.3. |
nrofHARQ-Processes Number of configured HARQ processes for SPS DL (see TS 38.321 [3], clause 5.8.1). |
periodicity Periodicity for DL SPS (see TS 38.214 [19] and TS 38.321 [3], clause 5.8.1). |
The IE SRB-Identity is used to identify a Signalling Radio Bearer (SRB) used by a UE.
The IE SRS-CarrierSwitching is used to configure for SRS carrier switching when PUSCH is not configured and independent SRS power control from that of PUSCH.
-- ASN1START -- TAG-SRS-CARRIERSWITCHING-START SRS-CarrierSwitching ::= SEQUENCE {srs-SwitchFromServCellIndexIndicates the serving cell whose UL transmission may be interrupted during SRS transmission on a PUSCH-less SCell. During SRS transmission on a PUSCH-less SCell, the UE may temporarily suspend the UL transmission on a serving cell with PUSCH in the same CG to allow the PUSCH-less SCell to transmit SRS. (see TS 38.214 [19], clause 6.2.1.3).INTEGER (0..31) OPTIONAL, -- Need M srs-SwitchFromCarrier ENUMERATED {sUL, nUL},srs-TPC-PDCCH-GroupNetwork configures the UE with either typeA-SRS-TPC-PDCCH-Group or typeB-SRS-TPC-PDCCH-Group, if any.CHOICE {typeAType A trigger configuration for SRS transmission on a PUSCH-less SCell (see TS 38.213 [13], clause 11.4). In this release, the network configures at most one entry (the first entry) of typeA, and the first entry corresponds to the serving cell in which the SRS-CarrierSwitching field is configured. SRS carrier switching to SUL carrier is not supported in this version of the specification.SEQUENCE (SIZE (1..32)) OF SRS-TPC-PDCCH-Config,typeBType B trigger configuration for SRS transmission on a PUSCH-less SCell (see TS 38.213 [13], clause 11.4).SRS-TPC-PDCCH-Config } OPTIONAL, -- Need MmonitoringCellsA set of serving cells for monitoring PDCCH conveying SRS DCI format with CRC scrambled by TPC-SRS-RNTI (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.3).SEQUENCE (SIZE (1..maxNrofServingCells)) OF ServCellIndex OPTIONAL, -- Need M ... } SRS-TPC-PDCCH-Config ::= SEQUENCE {srs-CC-SetIndexlistA list of pairs of [cc-SetIndex; cc-IndexInOneCC-Set] (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.4). The network does not configure this field for typeB.SEQUENCE (SIZE(1..4)) OF SRS-CC-SetIndex OPTIONAL -- Need M } SRS-CC-SetIndex ::= SEQUENCE {cc-SetIndexIndicates the CC set index for Type A associated (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.4).The network always includes this field when the srs-TPC-PDCCH-Group is set to typeA. The network does not configure this field to 3 in this release of specification.INTEGER (0..3) OPTIONAL, -- Need Mcc-IndexInOneCC-SetIndicates the CC index in one CC set for Type A (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.4). The network always includes this field when the srs-TPC-PDCCH-Group is set to typeA.INTEGER (0..7) OPTIONAL -- Need M } -- TAG-SRS-CARRIERSWITCHING-STOP -- ASN1STOP
SRS-CC-SetIndex field descriptions |
---|
cc-IndexInOneCC-Set Indicates the CC index in one CC set for Type A (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.4). The network always includes this field when the srs-TPC-PDCCH-Group is set to typeA. |
cc-SetIndex Indicates the CC set index for Type A associated (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.4).The network always includes this field when the srs-TPC-PDCCH-Group is set to typeA. The network does not configure this field to 3 in this release of specification. |
SRS-CarrierSwitching field descriptions |
---|
monitoringCells A set of serving cells for monitoring PDCCH conveying SRS DCI format with CRC scrambled by TPC-SRS-RNTI (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.3). |
srs-SwitchFromServCellIndex Indicates the serving cell whose UL transmission may be interrupted during SRS transmission on a PUSCH-less SCell. During SRS transmission on a PUSCH-less SCell, the UE may temporarily suspend the UL transmission on a serving cell with PUSCH in the same CG to allow the PUSCH-less SCell to transmit SRS. (see TS 38.214 [19], clause 6.2.1.3). |
srs-TPC-PDCCH-Group Network configures the UE with either typeA-SRS-TPC-PDCCH-Group or typeB-SRS-TPC-PDCCH-Group, if any. |
typeA Type A trigger configuration for SRS transmission on a PUSCH-less SCell (see TS 38.213 [13], clause 11.4). In this release, the network configures at most one entry (the first entry) of typeA, and the first entry corresponds to the serving cell in which the SRS-CarrierSwitching field is configured. SRS carrier switching to SUL carrier is not supported in this version of the specification. |
typeB Type B trigger configuration for SRS transmission on a PUSCH-less SCell (see TS 38.213 [13], clause 11.4). |
SRS-TPC-PDCCH-Config field descriptions |
---|
srs-CC-SetIndexlist A list of pairs of [cc-SetIndex; cc-IndexInOneCC-Set] (see TS 38.212 [17], TS 38.213 [13], clause 7.3.1, 11.4). The network does not configure this field for typeB. |
The IE SRS-Config is used to configure sounding reference signal transmissions. The configuration defines a list of SRS-Resources and a list of SRS-ResourceSets. Each resource set defines a set of SRS-Resources. The network triggers the transmission of the set of SRS-Resources using a configured aperiodicSRS-ResourceTrigger (L1 DCI).
-- ASN1START -- TAG-SRS-CONFIG-START SRS-Config ::= SEQUENCE { srs-ResourceSetToReleaseList SEQUENCE (SIZE(1..maxNrofSRS-ResourceSets)) OF SRS-ResourceSetId OPTIONAL, -- Need N srs-ResourceSetToAddModList SEQUENCE (SIZE(1..maxNrofSRS-ResourceSets)) OF SRS-ResourceSet OPTIONAL, -- Need N srs-ResourceTo